ISO/IEC DIS 15408-3:2020(E)

ISO/IEC DIS 15408-3:2020(E)
ISO/IECJTC1/SC27/WG 3 N1654
Secretariat: DIN

Information security, cybersecurity and privacy protection — Evaluation criteria for IT
security — Part 3: Security assurance components

© ISO/IEC 2020 - All rights reserved i



ISO/IEC DIS 15408-3:2020(E)

Contents Page
1 Y] 0 . 1
2 \V0) 0 0B L g L) o] 4 L, 1
3 Terms and definitions, symbols and abbreviated terms.......cc—————— 1
4 L0 0023 a2 T, 1
5 FACTA0 0 aez 10 LTl o ) Lo o o 2
5.1 00100 L1 00 2
5.2 ISO/IEC 15408 philoSOPhY ... ssssssssssssssssssssssss s sanes 2
5.3 P L0 0 ae= 10 ToTI=1 0 0 00T Tol o L 2
L0 T80 N 10 a0 Xo L0t () o . 2
5.3.2 Significance of VUINErabilities ... ————————— 2
5.3.3 Cause of VUINErabilities ..o sss s ssssssssass 3
5.3.4 ISO/IEC 15408 SEIi€S ASSUTAIICE ..cceususursrsessssssssessssssssssessassssssssassssssssssssssssssssssssssssassssssssssssssssssssnsssssssssssss 3
5.3.5 Assurance through evaluation ... —————————————————— 3
5.4 ISO/IEC 15408 series evaluation assurance SCale ... 4
6 Security aSSUrancCe COMPONENTS .....ccoucimmsmsmssmsessmsssssssssssssssssssssssssssssssssssssssssssssssssssesnssesmssesmssssmssssnssssanses 4
6.1 00100 L1 0 4
6.2 ASSUIanCe Class STIUCTUTE ... s m s e e m s s e sR e 4
LS 20 S 08 B 1L 1 B 1 LT, 4
(337207 22 04 B 113 1510 o010 1 ot 1) o O, 5
6.2.3  ASSUTrancCe families ... s 5
6.3 Assurance family SEIUCHUTE ......ccoiiimsmsmsmssinsnsissis s s s s s s s n s s e sas e 5
LS8 700 S T 1 10D 170 1 = 1 U, 5
L T2 0. 1) [ oo T, 6
LSS TS T 010 1 010 100 1 =) (Lo L3 7] 1 U0 0 . 6
(S0 T S N 0 0 ) Coc= U0 010 ¢ 0] =, 6
6.3.5 ASSUTANCE COMPOTEIIES wouerururmsmsnssssmsesssssssssssssssssssssssssasssssasssssssessssssesssssasssseeassas e bR AR SRR RS E AR R AR AR E AR R AR R R R AR R RS 6
6.4 Assurance COMPONENT SEIUCTULE ..o s s s ns e assemsenmsas 6
L3 5 S 01Ut o0 1o 11 o o) L, 6
6.4.2 Component identifiCation ... ——————————————————— 7
L S T 0. 1) [ o o T, 7
LS S N 0} 0 ) Coc= U0 (10 ¢ 0 2, 7
L ST D T3 0 7 ¢ o L ¢ Lot U, 7
6.4.6 ASSUTANCE ClEMEILES ...cucoriiserecssismsssssrsn s E AR R AR e R AR AR AR RS AR R R AR R AR R R R AR R RS 8
6.5 ASSUIANCE EIEIMEINLS ....ccciieieciiismsssrsssmsssssss s e e AR SRR SRR RAE AR R R AR R R AR AR R R R AR SRR RS 9
6.6 L0000 1080200 (T3 0 Lo 2 0] 4 10 1 1 . 9
7 Class APE: Protection Profile evaluation ... 9
7.1 00100 L1 00 9
7.2 PP introduction (APE_INT) ..cimsississssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssassasssssssssssssssssns 10
/08 R 0. 4 0 T 10
7.2.2 APE_INT.1 PP iNtroduction .....ccommmmmmmmsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 10
7.3 Conformance claims (APE_CCL) .ccouiiminmnmissmsmsmssssssssssssssssssssssssssssssssssssssssssssssssssassssssssasssssssssssssssssns 10
7% T I 0. 4 0 T 10
7.3.2 APE_CCL.1 CoNfOrmance ClAIIMS ....ccveerrrrmrsrssssmsssssssssssssssssssssssssssssssssssssssssssssmssssssasnsssnssssssssnsssnssssassannss 11
7.4 Security problem definition (APE_SPD) ......cismssssssssssssssssssssssssssssssssssssssssssssns 13

© ISO/IEC 2020 - All rights reserved ii



7.4.1
7.4.2
7.5

7.5.1
7.5.2
7.5.3
7.5.4
7.6

7.6.1
7.6.2
7.7

7.7.1
7.7.2
7.7.3
7.7.4

8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.4
8.4.1
8.4.2
8.5
8.5.1
8.5.2
8.5.3
8.54
8.6
8.6.1
8.6.2
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.8.1
8.8.2
8.9
8.9.1
8.9.2

9.1
9.2
9.2.1
9.2.2
9.3
9.3.1

ISO/IEC DIS 15408-3:2020(E)

L0 1 00T, 13
APE_SPD.1 Security problem definition ... 13
Security objectives (APE_OBJ) ... sssssssssssssssssassssssssssssssssssssssssssns 14
L0 1 00T, 14
(000107000 1 =) (Lo L= | U 14
APE_OB].1 Security objectives for the operational environment...........ccoumssmsmsssssssesessnas 14
APE_OB]J.2 SeCUTIItY ODJECHIVES ...cocvmimrmrmrmsmssssssnsisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsass 15
Extended components definition (APE_ECD) ......comnmimmsmmsssssssssssssssssssssssssssssssssssssssesns 16
L0 1 00T, 16
APE_ECD.1 Extended components definition ... 16
Security requirements (APE_REQ).......ccouinmmmmnmsmsssssmssssssssssssssssssssssssssssssssassssssssasssssssssssssssssns 17
L0 1 00T, 17
L0000 107000 1 =) (Lo L= | U 17
APE_REQ.1 Direct rationale PP-Module security requirements .........cmssssssssssssssssssas 17
APE_REQ.2 Derived security reUIre€ments .........couummsmsmsmssmsmsmsssssssssssssssssssssssssssssssasssssssssssssssssnsass 18
Class ACE: Protection Profile Configuration evaluation ... 20
000 o007 L3 U 00 o . 20
PP-Module introduction (ACE_INT) .....cccouinmmmmsmsmsmsnssssssmsssssssssssssssssssssssssssssssssassssssssasssssssssssssssssns 20
L0 1 00T, 20
ACE_INT.1 PP-Module iNtroOdUCHIiON ....cvvciiiesrierssmssssssssssssssssssssssssssssssssssssssssssssssssssssssssnssssssssnssanssnsanssn 20
PP-Module conformance claims (ACE_CCL) ..ccuciomimnmsmmsmsmsssssmsmsssssssssssssssssssssssssssssssssassssssssssssssssns 22
L0 1 00T, 22
ACE_CCL.1 PP-Module conformance Clails .......cccveerrsmmssmsssssssssmssssssssssssssssssssssssssssssssssssssssnssasssssassss 22
PP-Module security problem definition (ACE_SPD).....ccccimmmsssssssssssssssssssssssssens 23
L0 1 00T, 23
ACE_SPD.1 PP-Module Security problem definition........ssssssenn 24
PP-Module security objectives (ACE_OBJ) ...ccouurnmmmmmmmsmsmsmssssmssssssssssssssssssssssssssssssssasssssssssssssssssns 24
L0 1 00T, 24
L0000 107000 1 T2 (Lo L =Y | U 24
ACE_OB]J.1 Direct Rationale PP-Module security objectives.........ccouummmnmsmsmssssssmssssssssssesnsans 24
ACE_OB]J.2 PP-Module Security 0bjeCtiVes.....c.cuummmmsmsmsmsmssssmsmsssssssssssssssssssssssssssssssssssssssssssssssssssas 25
PP-Module extended components definition (ACE_ECD) ......ccovumnnmmmsmsmsssssssmssssssssssssssssssesns 26
L0 1 00T, 26
ACE_ECD.1 PP-Module extended components definition ... 26
PP-Module security requirements (ACE_REQ).....cccocumumsmmmmsmsmsmsssssmsmssssssssssssssssssssssssssssssssssssssens 27
L0 1 00T, 27
L0000 107000 1 TS (Lo L= | U 28
ACE_REQ.1 PP-Module stated seCurity reqUIr€ments ........csisssmmsssssssssssssssssssssssssssssas 28
ACE_REQ.2 PP-Module derived security reqUIirements ........uimsmmssssssssssssssssssssssssssssssas 29
PP-Module consistency (ACE_MCO) .....cccouimsmmmssmsmsmsmsnsssssssssssssssssssssssssssssssssssssssssassssssssasssssssssssssssssns 30
L0 1 00T, 30
ACE_MCO.1 PP-MoOdule CONSISTENCY ...coveruismsmsessisssmsmssssssssssmssssssssssssasssssssssssssssssssassssssssassssssssassssssssssass 30
PP-Configuration consistency (ACE_CCO).....cccummmmmmmsmsmssssssmsmssssssssssmsssssssssssssssssssssssasssssssssssssssssns 32
L0 1 00T, 32
ACE_CCO.1 PP-Configuration CONSISENCY ......cuumsmmssmsmsmsmsssssssssssssssssssssssssssssssssssssssssasssssssssssssssssssass 32
Class ASE: Security Target evaluation........mssssssssssssssssssssssmns 36
000 o007 L3 U 00 o . 36
ST introduction (ASE_INT) ... ssssssssssssssssssssssnes 36
L0 33 1Tt T, 36
ASE_INT.1 ST iNtrOdUCHION c.ueiiierisrisesssssrsssssssssssssssssssssssssssssssssssssssssssssssssnssssssssnssssssasasssnssssssssnssanssnsanssn 37
Conformance claims (ASE_CCL)..ccuiinimmsmmssssssssssssssssssssssssssssssssssssssssssssssssssassssssssasssssssssssssssssns 38
L0 1 00T, 38

© ISO/IEC 2020 - All rights reserved iii



ISO/IEC DIS 15408-3:2020(E)

9.3.2 ASE_CCL.1 CONfOrmance ClaIMIS....ccccuirrrrusrssssssasssssssssssssssssssssssssssssssssssssssasssnssssssssnssssssssasssnssssssssnsssnsssses 38
9.4 Security problem definition (ASE_SPD) ......ccimnmssssssssssssssssssssssssssssssssssssssssssssns 40
12 2 s R 0 1) 1 o T 40
9.4.2 ASE_SPD.1 Security problem definition ... 40
9.5 Security objectives (ASE_OBJ)...cmismmssssssssssssssssssssssssssssssssssssssssssssssssssssssassssssssassssssssssssssssns 41
£ 2R 00 B 0. 1) 1 o T 41
2 T2 000 1 010 100 1 T (Lo C ) 1 U 41
9.5.3 ASE_OB].1 Direct rationale Security objectives for the operational environment............... 41
9.5.4 ASE_OB]J.2 SecUrity ODJECtIVES .....coviiimimninmisssmsmsssssssmssssssssssssssssss s ssssss s ssss s ans 42
9.6 Extended components definition (ASE_ECD)......commnmnmssmsmsmsssssmsssssssssssssssssssssssssssssssssssssns 43
£ 2K 0 A 0. 1) 1 o T 43
9.6.2 ASE_ECD.1 Extended components definition.......osssssssssssssssses 43
9.7 Security requirements (ASE_REQ) ......ccoinnmnmnmmsmsmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 44
£ 20 s T 0 1) 1T o o T 44
2 2 2 010 1 013 100 1 ) (Lo C ] 1 U 0 44
9.7.3 ASE_REQ.1 Direct Rationale Stated security reqUirements..........ccousssmsmsmsssssssmssssssssssssssssssesns 44
9.7.4 ASE_REQ.2 Derived Security reUIrements.....cuumsmssmsmssssssssmsssssssssssssssssssssssssassssssssassssssssssssssssns 46
9.8 TOE summary specification (ASE_TSS) ....ccccummmmnmnmmssmmsmssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 48
12 2R 20 B 0. 1) 1 o T 48
2R Z 000 1 010 100 1 T (Lo C ] 1 U 0 48
9.8.3 ASE_TSS.1 TOE summary SpecCifiCation.......cummmmsmssssssssssssssssssssssssssssssssssssssssssns 48
9.8.4 ASE_TSS.2 TOE summary specification with architectural design summary .......cccucusesesnsens 49
9.9 Consistency of composite product Security Target (ASE_COMP) .......cconrrsmsmnmsmsssssmssssssssssenns 50
12 20 T B 0 1) 1 o T 50
9.9.2  ASE_COMP.1 ...ccrirscsinsmsnssssssmssssssssssssss s ssssssssssssssssssassssssssasaes Consistency of Security Target 50
10 Class ADV: DEVEIOPMENL .....couvuieicimsismsnssmsssmssssssssssssssssssssssssssssssssss s s s sssss s sssssssassesssssasssssssssssssnssns 52
3 10 200 N 410 0 L () 4 52
10.2 Security Architecture (ADV_ARQC).....couimsmmmsissmsmsmsssssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssnsas 57
B2 B 0] 0 =t . 57
10.2.2 Component leVelling...... s sas s 57
RS I 0] 0] L or 1 (0] 4101 (0 oL, 57
10.2.4 ADV_ARC.1 Security architecture deSCription ... 58
10.3 Functional specification (ADV_FSP) ... issmsssssssssssssssssssssssssssssssssssssssssssas 59
B0 T80 B 0] 0 =t 59
10.3.2 Component leVelling......uinsnssss s s sasas 59
10.3.3 APPLICATION NOTES cuceuiuciisnsscssmsmssssssssmsssss s ss e m s E s E RS E AR e R AR AR AR R R AR R R R AR R AR R R R AR RS 59
10.3.4 ADV_FSP.1 Basic functional specifiCation ........uummmmnsssssssssssssssssssssssssssssas 62
10.3.5 ADV_FSP.2 Security-enforcing functional specification........cunn 63
10.3.6 ADV_FSP.3 Functional specification with complete SUMMATrY .......ccocummmmmsmsmsmssssssmssssssssssesnias 64
10.3.7 ADV_FSP.4 Complete functional specification.......cccuumsmsnnisinsissssssssssssssssssssssnsas 65
10.3.8 ADV_FSP.5 Complete semi-formal functional specification with additional error

INFOIMATION ... ———————————————————— 66
10.3.9 ADV_FSP.6 Complete semi-formal functional specification with additional formal

£33 012011 L= 100 ) o L, 67
10.4 Implementation representation (ADV_IMP) .......mmmnmmissssssssssssssssssssssssssssas 68
B s B 0] 0 =t . 68
10.4.2 Component 1eVelling......nnnsssi s s sasas 69
10.4.3 APPIICATION NOTES c.ceeiiciisniscissmsmsssssnsssss s ss e m s E R RS E SRS AR AR AR R R R R AR R RE AR R AR R R ERRR RS 69
10.4.4 ADV_IMP.1 Implementation representation of the TSF ... 70
10.4.5 ADV_IMP.2 Complete mapping of the implementation representation of the TSF............... 71
10.5 TSF internalS (ADV_INT)..usssscsmsmsnssssssssesssssssssssssssssssssssassssssssassssssssssssssssassassssssssassssessssssssssssnsass 71
TR0 B 0] 0 =t . 71

© ISO/IEC 2020 - All rights reserved iv



ISO/IEC DIS 15408-3:2020(E)

10.5.2 Component IeVelling......uimnnnssnsmsssss s s sasas 72
10.5.3 APPLICATION NOTES cuceeiiciisnisrissmsmsssssssssssssssss s ss s e m s s e RS e E AR SRR R AR SRR AR R AR R R R AR SRR R ERERRR RS 72
10.5.4 ADV_INT.1 Well-structured subset of TSF internals .........cccuceuremsrmsmsssssssmssssssssssssssssssssssssssssssssasses 72
10.5.5 ADV_INT.2 Well-structured iNnternals .......ccccuesrrsrsssmsssmsssssssssssssssssssssssssssssssnssssssssasssnssssssssassssssssassss 73
10.5.6 ADV_INT.3 Minimally compleX INternals ......cummsmmmmssmsmsmsmsssssssssssssssssssssssssssssssssssssssssssssssas 74
10.6 Security policy modelling (ADV_SPM) ......ccouinmmmmsmsmsmmssssssmssssssssssssssssssssssssasssssssssssssssssssssssssnsas 75
00 0] 0 =t 75
10.6.2 ComPONeNt IeVelling......cuimsmnmnscssnssssssss s s 75
10.6.3 APPIICATION NOTES c.ceniciisniscsnsmsmssssssssssss s ss s m s m A E RS e E AR RS E R AR AR SRR R R AR R R AR R AR R R ERRR RS 76
10.6.4 ADV_SPM.1 Formal TOE security policy mOdel.......comsnimsmnninssmsssssssssssssssssssssssssssas 77
10.7 TOE desSign (ADV_TDS) ..cccusinmmmsmsmsmsmsmsmsssssmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasas 78
IR B 0] 0 =t . 78
10.7.2 Component leVelling......umnnnsssssssssss s s sasass 79
10.7.3 APPIICATION NOTES cuceeiicirisniscinsmsmssssssssssssses s ss s e m s e m e e AR SRR E R AR AR AR R AR R R R AR SRR R R E AR RS 79
10.7.4 ADV_TDS.1 BaSiC AeSIGN....ccciiimircimrmsmsssmsisnssssssssisssssssssssssssssssssssssssssssssssssssssssssssssssasssssssssssssessssssssssssnsass 80
10.7.5 ADV_TDS.2 Architectural deSign.......cuimimnnmimsmsmmsssssmsssssssssssssssssssssss s ssssssssssssssssass 81
10.7.6 ADV_TDS.3 Basic MOAUIAr deSiGN.......ccouiimimsismisssssmsmsssssssmsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsass 82
10.7.7 ADV_TDS.4 Semiformal modular deSign .......cuumsmsmsmssmsssmsmssssssssssissssssssssssssssssssssssssssssssssssssas 84
10.7.8 ADV_TDS.5 Complete semiformal modular deSign .......ccouiinminnnisssmssssssssssssssssssssssssssssssas 85
10.7.9 ADV_TDS.6 Complete semiformal modular design with formal high-level design

J 00 QLY ] 1L L0 86
10.8 Composite design compliance (ADV_COMP).......cccuirimmmmmsmsmsmsmssssssmsmssissssssssssssssssssssssssssssssssssssssas 88
T0.8.1 ODjJECHIVES cureeserurarinsisnissssmssssssssssssmsssssssssss s sess s ss s e e RS SRR A SRR AR AR AR AR AR A AR RS REREARERE R ERRR AR AR RERER AR R ERERRR RS 88
10.8.2 Component leVelling......cmnnnmsnssnssssssssss s s sasass 88
10.8.3 APPLICATION NOTES c.cueeiuciisniscssmsmssssssssmssssssss s ss e s s s m e e R e AR AR SRR R AR R R R R AR R R R AR SRR R R ERRR RS 88
10.8.4 ADV_COMP.1Design compliance with the platform certification report, guidance and ETR_COMP ¢
11 Class AGD: Guidance dOCUMENTS.......ommsismmsmmsss s ——————————— 920
3 15 T T 410 0 L () 4 920
11.2 Operational user guidance (AGD_OPE) ......cccoiinmmmsmmmmsmmsmmsssssmsisssssssssssssssssssssssssssssssssssssas 920
0 s B 0] ) =t . 920
11.2.2 Component leVelling......icnnssnssssssss s sasass 921
11.2.3 APPIICATION NOTES cuceeiuciisniscissmsmsssssssssssssssss s ss s e m e e AR SRR E R AR AR SRR AR R AR AR R AR R AR R R R AR RS 921
11.2.4 AGD_OPE.1 Operational uSer UIdanCe .........cuumsmsmsmsmssssssmmssssssissssssssssssssssssssssssssssssssssssssssssas 921
11.3 Preparative procedures (AGD_PRE)..... i isnsmssssssssssssssssssssssssssssssssssssssssssssssssssass 92
30 0 00 B 0] ) =t 92
11.3.2 Component leVelling......nnrnmssssssssss s s sasass 92
11.3.3 APPLICATION NOTES cucenicirisnsscsnsmsmssssssssssssss s ss e m s E R RS e E SRS E R AR AR AR R R AR R R R AR SRR R R R AR RS 93
11.3.4 AGD_PRE.1 Preparative ProCeAUIES.....ccmmmmimsmsmsmssssssssssssssssssssssssssssssssssssssssassssssssasssssssssssssssssnsass 93
12 Class ALC: Life-CYCIe SUPPOIT ....icoerineiicmsismsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssassassssssssssssssnssns 94
0 /25 R 410 o0 T L () 4 94
12.2 CM capabilitieS (ALC_CMOC) ccccuicsmsmsmsasmsmssssssssssssssssssssssssssssssssnsassssssssassssssssssssssssassasssssassassssensssssssssssnsass 95
20 28 0] 0 =t 95
12.2.2 CompPOonent leVelling...... i sssss s s sasass 95
L2 Z0C TV 0] 0] Lot 1 00 0101 (0 oL, 95
12.2.4 ALC_CMC.1 Labelling of the TOE........ccoummmmmmmmmmmsssssssssssssssssssssssssssss s 96
12.2.5 ALC_CMC.2 UsSe Of the CM SYSTEIM c.ccrurermsmsssscsmsmssssssssmsssssssssssssssssssssssssssssssssssssssssssasssssassassssssssnssssssssnsas 96
12.2.6 ALC_CMC.3 AuthoriSation CONIOLS ......ccuucuurssrrsessssssssssssssssssssssssssssssssssssssssssssssnssssssssasssnssssssssasssnssssanssn 97
12.2.7 ALC_CMC.4 Production support, acceptance procedures and automation .......cuuucsesesesnsans 99
12.2.8 ALC_CMC.5 AdVANCEA SUPPOTT curorrrrmssrmsmsmssssssmssssssssssssmssssssssssssssssssssssssssssssssssssssssssssssssssassssssssassassnssnss 101
12.3  CM SCOPE (ALC_CMS) wuciimmmsmsmmsssssssssssssssssssssssssssss s s 104
2 T80 B 0] 0 =t 104
12.3.2 CompOonent leVelling.......ccummnnmnissnsisisssnssssssssssssssssssssssssssssssss s sssssssnss 104

© ISO/IEC 2020 - All rights reserved \%



ISO/IEC DIS 15408-3:2020(E)

B ZRC TSIV 0] 0] L or 1 (0] 0101 (0 oL, 104
12.3.4 ALC_CMS.1 TOE CM COVEIAZC...cvururermsssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssanss 104
12.3.5 ALC_CMS.2 Parts of the TOE CM COVETAGE .....cvururrmrmsmssmsmsmsmssssssssssssssssssssssssssssssssassssssnssssssssssassssssssnss 105
12.3.6 ALC_CMS.3 Implementation representation CM COVETrage.........cummmmmsmsmsmssssmssssssssssssssssassssssssnss 106
12.3.7 ALC_CMS.4 Problem tracking CM COVETAZE ........cuusmsmssmsmsmsmssssmsssssssssssssssssssssssssssassssssnsassssssssassssssssnss 107
12.3.8 ALC_CMS.5 Development t00ls CM COVETAGE .....ccurmrumsmsmsmssssmsmssssssssssssssssssssssssssssssssssassssssssassssssssns 108
12.4 Delivery (ALC_DEL) .o ssssssssssssssssssssssssssasss 109
B s 0] 0 =t 109
12.4.2 Component leVelling......cmnnmnnssssssssssssssssssss s sssssnss 109
12.4.3 APPIICATION NOTES c.ceuiiirnsnsssmsmsmsssssssssssssss s s s e e s s e R R AR SRR A AR AR R AR R AR RE AR R AR AR R AR AR SRR R R AR R RS 109
12.4.4 ALC_DEL.1 DeliVery ProCeAUIES....ccouusmsmismsmsmssssssssssmsmssssssssssssssssssssssssssssssasssssssssssssssssnsassssssnsasssssnssnss 110
12.5 Developer environment Security (ALC_DVS).....onnmimsmnmmssmssssssssssssssssssssssssssssssssssns 110
200 B 0] 0 =t . 110
12.5.2 CompPOonent leVelling.......cummnnmmsnsmisssssssssssssssssssssssssss s sssssssnss 110
12.5.3 APPIICALION NOTES c.ceeiucirisnisssmsmsssssssssssssssss s s s s s s e s e AR SRR AR R R AR R R R AR R AR AR R AR AR AR R R AR R RS 110
12.5.4 ALC_DVS.1 Identification of security CONtrols.......sssns 111
12.5.5 ALC_DVS.2 Sufficiency of Security CONEIols .......cmmmnmnssssssssssssssssssssssssssssns 111
12.6 Flaw remediation (ALC_FLRY) ...isnssissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 112
B2 300 0] 0 =t 112
12.6.2 ComPONeNt IeVelling......ccuimmnnmnnsnsissssnssssssssssssssss s s sssnss 112
12.6.3 APPIICATION NOTES c.ceeiucirisnsssesmsmssssssssssssss s s s e s e R R AR S EAE A AR AR R R AR R R AR R AR AR R AR AR AR R R AR R RS 112
12.6.4 ALC_FLR.1 Basic flaw remediation .......cccccervsmmismissssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssnssssssssnsssnes 113
12.6.5 ALC_FLR.2 Flaw reporting ProCeAUIES .......ccummmmsmsssmsmssssssssssssssssssssssssssssssssassssssssassssssssassssssssns 113
12.6.6 ALC_FLR.3 Systematic flaw remediation ........ccummsnsssssssssssssssssssssssssssssssns 115
12.7 Development Life-cycle definition (ALC_LCD) ...cccuicusmnmsmsmsmsssssssmssssssssssssssssssssssssssssssssssassssssssnss 117
20 A T 0] 0 =t 117
12.7.2 CompPOonent leVelling......cmnnmnmsnsiisssnsssssssssssssssssssssssssssssss s sssssssssssnss 117
12.7.3 APPIICATION NOTES c.ceeiucimsnssssesmsmsssssssssssssss s s s e e s e s R AR AR SRR R R AR R AR R AR R AR AR R AR AR R AR R R AR R RS 117
12.7.4 ALC_LCD.1 Developer defined life-cycle Processes ........umimmmmmsssssssmsssssssssssssssssssns 118
12.7.5 ALC_LCD.2 Measurable life-cycle model........umnnsmsnnmsssssssssssssssssssssssssssssssssssns 118
12.8 TOE Development Artifacts (ALC_TDA)....ccuuummsmsmmmssmsmsmsmssssssssssssssssssssssssssssssssssssssssssssssssssassssssssnss 119
B2 20 B 0] 0 =t 119
12.8.2 ComPOoNeNnt leVelling......cmmsnmnnssnsissssssssssssssssssssssssssss s sssssssssssnss 120
2R STV 0] 0] L or 1o (0] 0101 (0 oL, 120
12.8.4 ALC_TDA.1 Uniquely identifying implementation representation ... 120
12.8.5 ALC_TDA.2 Matching CMS scope of implementation representation ... 123
12.8.6 ALC_TDA.3 Regenerate TOE with well-defined development tools.......c.ccoconsrsmsnsesnscsnsesesnns 125
12.9 Tools and techNiquUes (ALC_TAT)uumimsmsmsmssssssssmsmsssssssssssssssssssssssssssssssssssssssssassssssssassssssssassssssssns 128
020 BB B 0] 0 =t 128
12.9.2 CompPOonent leVelling......ccummnmnmnnssnsissssssssssssssssssssssssssssssss s sssssssssssnss 128
12.9.3 APPIICATION NOTES c.ceniucinsnrrsesmsmssssssssssssss s s s s s e R e e AR SRR AR e R R AR R AR R AR R AR AR R AR AR R AR R R AR R RS 128
12.9.4 ALC_TAT.1 Well-defined development tOOIS .......cccuucummnmssmsmsmsmsssssmsmsssssssssssssssssssssssssssssssassssssssnss 128
12.9.5 ALC_TAT.2 Compliance with implementation standards..........u—————— 129
12.9.6 ALC_TAT.3 Compliance with implementation standards - all parts........———— 130
12.10 Integration of composition parts and consistency check of delivery procedures

78 O O 00,31 < 131
1728 1 Objectives
2 L Component levelling
T2.00.3 e —————————————————————————————————————— ALC_COMP.1
13 00 B T U I D T . 132
3 00 N 410 0 T L () 4 132
13.2  COVETABe (ATE_COV) .ciiiicimsmsmsasmsmsssssssssssssssssssssssss s sssssss s sssssss st sas s e ss s e ssms s e sms s s s smsasanenssnss 133

© ISO/IEC 2020 - All rights reserved vi

131
131
Inte



ISO/IEC DIS 15408-3:2020(E)

0 0 B 0] 0 =t 133
13.2.2 ComPOonent 1eVelling.......ccouimnmsmnmnmssnsissssssnsssssssssssssssssssssssssssssssss s ssssssssnssnss 133
13.2.3 APPIICATION NOTES c.ceeiucimsnssssmsmsmssssssssssssssss s sssa s e e s e R e AR SRR SRR AR R AR R R RE AR R AR AR R AR AR R AR R R AR R RS 133
13.2.4 ATE_COV.1 EVidence Of COVEIaZe .......cuummimsmsmsmsmssmsmsmsmssssssssmsssssssssssssssssssssssssssssssssssssssnsassssssssasssssnssnss 133
13.2.5 ATE_COV.2 ANalySiS Of COVETAZE ..ccocvrrvermrmssmmsmsmsmssssmsmsmssssssssssssssssssssssssssssssssssssssssssssssssssassssssssasssssnsanss 134
13.2.6 ATE_COV.3 Rigorous analysis 0f COVETrage........cuummmmmmmsmsmmsssssmmsssssssssssssssssssssssssssssssassssssssns 135
13.3  DePth (ATE_DPT) i s ssssssssssssssssasss 135
I 20 T80 B 0] ) =t 135
13.3.2 CompPOonent IeVelling.......ccoursmnmnmnsssnsinisssnssssssssssssssssssssssssssss s sssnss 136
13.3.3 APPIICALION NOTES c.ceeiucirisnrsesmsmssssssssssssss s ss e m s e R R AR AR AR R R AR R AR AR R AR AR R AR AR AR R R AR R RS 136
13.3.4 ATE_DPT.1 Testing: basiC deSiZN ......couniiimsmnmsmmsmsmsmssssssmsmssssssssssssssssssssssssssssssssssssssssssssssssassssssssnss 136
13.3.5 ATE_DPT.2 Testing: security enforcing modules ... 137
13.3.6 ATE_DPT.3 Testing: modular deSigN .........cccurmmsmsmsmssmsmsmsmssssssmssssssssssssssssssssssssssssssssssssssssssassssssssns 138
13.3.7 ATE_DPT.4 Testing: implementation representation ..........——————s 138
13.4 Functional teStS (ATE_FUN) ...ccooimmisisssmssssssssssmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssnssnss 139
T s 0] 0 =t 139
13.4.2 CompOonent leVelling.......ccoumnmnmissnssssnsssssssssssssssssss s sssnss 140
13.4.3 APPIICATION NOTES c.ceniciisnrcissmsmssssssssssssss s ss s R AR AR RS AR AR R R AR R R R AR R AR AR R AR AR AR R R AR R RS 140
13.4.4 ATE_FUN.1 Functional teStiNg....ccccuumsmrmsmimsmsmsmssssssssmsmsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassssssssnss 140
13.4.5 ATE_FUN.2 Ordered functional teSting........ccuusmmmmmsmsmsmssssmsmsssssssmssssssssssssssssssssssssssssssssssassssssssns 141
13.5 Independent testing (ATE_IND) ...cccconnimsmsmsmssmsssmsmsmssssssssssssssssssssssssssssssssssssssssassssssssassssssssasssssnssnss 142
I T B 0] 0 =t 142
13.5.2 ComPOoNnent leVelling.......ccoumsmsmnmnimsnsississsnssssssssssssssss s sss s s sssnss 142
13.5.3 APPIICATION NOTES c.ceeiucirisnssesmsnsssssssssssssses s s e R R AR AR SRR R R R AR R R AR R AR AR AR AR AR R R AR R RS 142
13.5.4 ATE_IND.1 Independent testing - CONfOrMANCE......ccccuurmsmssrsmsmsmsssssmsesssssssssssssssssssssssssssssssassssssssnss 143
13.5.5 ATE_IND.2 Independent testing - SAMPIE ......coccceermnmsmsmsmsmssssssmsssssssmessssssssss s sssasssssssnss 144
13.5.6 ATE_IND.3 Independent testing - COMPIELE .......ccvrcrmrmnmsmsmsmsssssmsmsssssssssssssssssssssssssssssasssssssass 145
13.6 Composite functional testing (ATE_COMP) .......ccoummnmsmsmssssmsmsssssssmsmsssssssssssssssssssssssssssssssassssssssns 146
T 00 0] 0 ) =t 146
13.6.2 APPIICATION NOTES c.ceiuiucirisniscsesismssssssssssssse s s s s e m s e R R AR AR SRR e R R AR R R RE AR R AR AR R SR AR R AR R R AR R RS 146
13.6.3 ATE_COMP.1 Composite product functional teSting .........ccccuiminninsssmssssssmsssssssens 147
14 Class AVA: Vulnerability aSSESSIMENL ......couocimrmsmsmsmsmsmssssssssssssssssmssssssssssssssssssssssssssssssssssssssssssssssssnes 147
8 5 S 41 oo 7 L1 ot () o 147
02 0 0] Lo 1 () 000 (0 o, 148
14.3 Vulnerability analysis (AVA_VAN) ..o ssssssssssssssssssssssssssssssssssssnss 148
0 T80 0] 0 ) =t 148
14.3.2 ComPOoNeNnt IeVelling.......ccoumsmnmnmnnssnsmsssnsssssssssssssss s sssnss 149
14.3.3 AVA_VAN.1 VUINerability SUI'VEY ......ccimsmsmmsmsmmsssssmsssssssssssssssssssssssssssssssssssssssssssssssssassssssssnss 149
14.3.4 AVA_VAN.2 Vulnerability analysis .......msssssssssssssssssssssssssssssssssssssssssssns 150
14.3.5 AVA_VAN.3 Focused vulnerability analysSiS......cummmmmsssssssssssssssssssssssssssns 151
14.3.6 AVA_VAN.4 Methodical vulnerability analysis ... 152
14.3.7 AVA_VAN.5 Advanced methodical vulnerability analysis ... 153
14.4 Composite vulnerability assessment (AVA_COMP) .....onninmsmsmsssssssmssssssssssssssssssssssssssssssns 155
0 s 0] 0 =t 155
14.4.2 AVA_COMP.1 Composite product vulnerability asseSSMeNt .........ccuuurmsmsmsmsmsmsssmssssssssssssesssns 155
15 (08 B T 000 000 111 0203 U (o) . 156
LS00 A 11 o7 L1 ot () o 156
15.2 Composition rationale (ACO_COR)....ccciimsmnmsmsmsmsmsmssssssmssssssssssssssssssssssssssssssssssssssssssssssssssssassssssssnss 159
8L B 0] 0 =t 159
15.2.2 CompPOonent leVelling......ccummsmnmnissnsmsisssnsssssssssssssssssssssssssssssss s sssssssnss 159
15.2.3 ACO_COR.1 Composition rationale........mmmmsssssssssssssssssssssssssssssssssssssssssssssssns 159
15.3 Development evidence (ACO_DEV) ... immssmssssssssssssssssssssssssssssssssssssssssssssssassssssssns 159

© ISO/IEC 2020 - All rights reserved vii



ISO/IEC DIS 15408-3:2020(E)

LT T80 B 0] 0 =t 159
15.3.2 ComPOonent leVelling......ccuimmsmnmnsssnsmnisssnsssssssssssssssss s s sssnss 159
15.3.3 APPIICATION NOTES c.ceeiuciisnssssesmsmssssssssssssss s e s e R e AR SRR R R AR R R R AR R AR AR R AR AR AR R R AR R RS 160
15.3.4 ACO_DEV.1 Functional DeSCription......mmmmmssssssmsssssssssssssssssssssssssssssssssssssssssssssssssssassssssssns 160
15.3.5 ACO_DEV.2 Basic evidence Of deSigN .........cummrmmsmsmsmssmsmsmsmssssssssssssssssssssssssssssssssssssssssssssssssssassssssssns 161
15.3.6 ACO_DEV.3 Detailed evidence of deSigN.........ccucrmrmmmssmsmsmsmssssssssssssssssmssssssssssssssssssssssssssssssssasssssssns 162
15.4 Reliance of dependent component (ACO_REL) ....cccumsmsmnmnmsssssmsmssssssssssssssssssssssssssssssssassssssssns 163
L s 0] 0 =t 163
15.4.2 ComPOoNeNnt IeVelling......ccunmmnmnmnnmsnsiissnsssssssssssssss s sss s s sssnss 163
15.4.3 APPIICATION NOTES c.ceuicimsnirsesmsmssssssmsssssss s e s R e AR SRR R R AR R R R AR R AR AR AR AR R AR R R AR R RS 163
15.4.4 ACO_REL.1 Basic reliance information .......ccvsiierisesmissmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssses 164
15.4.5 ACO_REL.2 Reliance iNformation......cccccuuisrisesssssmisssssssssssssssssssssssssssssssssssssssssssssssssnssssssssnsssnssssssssnsssnes 164
15.5 Composed TOE teSting (ACO_CTT) ...ccoussmsmsmssssssmsssssmssssssssssssssssssssssssssssssassssssssssassssssssassssssssassssssssnss 165
BT 00 0] 0 =t 165
15.5.2 ComPOonent leVelling......cumnmnnmnissnsissssssssssssssssssssssssssssss s sssssssnss 165
15.5.3 APPIICATION NOTES c.ceuicirisnsscsssmsmssssssssssssss s s s s s e AR AR R R R AR R R R R AR AR R R AR AR R R AR R RS 165
15.5.4 ACO_CTT.1 INterface teStING....ccourmrssmsmsmssssssmsmsssnssssssmsmssssssssmsssssssssssssssssssssassssssssnsssssssssssssssssnsassansnssnss 166
15.5.5 ACO_CTT.2 Rigorous interface teSting ........cmmmsmsmmsssssmsssssssssssssssssssssssssssssssssssssssssssssssns 167
15.6 Composition vulnerability analysis (ACO_VUL) ...cccusmsmsmsmssssssmsmsssssssssssssssssssssssssssssssassssssssns 168
BT 00 0] 0 =t 168
15.6.2 ComMPONENt IeVelling......ccorrmmsmnmnssnsissssssssssssss s nnsnss 168
15.6.3 APPLICATION NOTES c.ceuiuciisnssrsssmsmssssssssssssss s s ss s e s e AR E SRR R R AR R R R AR R AR AR R AR AR AR R R AR R RS 168
15.6.4 ACO_VUL.1 Composition vulnerability review ... 169
15.6.5 ACO_VUL.2 Composition vulnerability analysis ... 170
15.6.6 ACO_VUL.3 Enhanced-Basic Composition vulnerability analysis ... 170
Annex A (informative) Development (ADV) ... 172
Al ADV_ARC: Supplementary material on security architectures ..., 172
A.1.1 Security architecture Properties ... ———————————————— 172
A.1.2 Security architecture deSCriptions ... ——————————————— 173
A2 ADV_FSP: Supplementary material on functional specification ........ccccunnsssnsnssssssnsennsnns 175
A.2.1 NON-TSF Part of the TOE ... ssssssssssssssssssssssssssssssnss 176
A.2.2 Determining the TSFI ... s sss s e sssnss 177
A.2.3 Example: A cOMPIEX DBMS ... ssssssssssssssassssssssssssssssssssssssssnss 180
A.2.4 Example Functional SpecifiCation .......iisnmsssmmssssssssssssssssssssssssssssssssssssssssssssssssssssnss 181
A3 ADV_INT: Supplementary material on TSF internals........ccomssssssns 183
A.3.1 Structure of procedural SOfEWAre........cuiciiss s —————————— 183
A.3.2 Complexity of procedural SOftWAre ... 185
A4 ADV_TDS: Subsystems and MOAUIES.........cccorimimsmnmsmsmsmsmsssssmssssssssssssssssssssssssssssssssassssssssassssssssnss 186
72 W 00 Y 1 1 £ =) (1, 186
L N (0 T L T, 187
A.4.3 Levelling APPIOACK ...t s m s e R s e 189
L W R YT ) L0 () U 191
A5 Supplementary material on formal methods....... i ——————— 192
Annex B (informative) COmposition (ACO) ....cucimsmsmsmsmsmssmsssmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 194
B.1 Necessity for composed TOE evaluations.......cummsssssssssssssssssssssssssssssssssss 194
B.2 Performing Security Target evaluation for a composed TOE .........ccounnmnmsmsmssssssmssssssesenes 195
B.3 Interactions between composed IT eNtities ... ————————————— 196
Annex C (informative) Cross reference of assurance component dependencies........usesessenens 202

© ISO/IEC 2020 - All rights reserved viii



ISO/IEC DIS 15408-3:2020(E)

Foreword

To be review by ISO-Editor

[SO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC]JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for
voting. Publication as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 15408-3 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 27, Information security, cybersecurity and privacy protection.

This fourth edition cancels and replaces the third edition (ISO/IEC 15408-3:2008), which has been
technically revised.

A list of all parts in the ISO/IEC 15408 series can be found on the ISO website. This corrected version
of ISO/IEC 15408-3:XXXX incorporates miscellaneous editorial corrections mainly related to EAL4 and
EALG6 assurance components, ADV_FSP, ADV_TDS, ATE_DPT.2, ATE_IND, and ALC.

© ISO/IEC 2020 - All rights reserved ix



ISO/IEC DIS 15408-3:2020(E)

Legal Notice

The governmental organizations listed below contributed to the development of this version of the
Common Criteria for Information Technology Security Evaluations. As the joint holders of the
copyright in the Common Criteria for Information Technology Security Evaluations, version 3.1 Parts 1
through 3 (called CC 3.1), they hereby grant non-exclusive license to ISO/IEC to use CC 3.1 in the
continued development/maintenance of the ISO/IEC 15408 series international standard. However,
these governmental organizations retain the right to use, copy, distribute, translate or modify CC 3.1 as
they see fit.

Australia/New Zealand: The Defence Signals Directorate and the Government Communications
Security Bureau respectively;

Canada: Communications Security Establishment;

France: Agence nationale de la sécurité des systemes d’information (ANSSI);

Germany: Bundesamt fiir Sicherheit in der Informationstechnik;

Japan: Information Technology Promotion Agency;

Netherlands: Netherlands National Communications Security Agency;

Spain: Ministerio de Administraciones Publicas and Centro Criptoldgico
Nacional;

United Kingdom: Communications-Electronic Security Group;

United States: The National Security Agency and the National Institute of Standards
andTechnology.

© ISO/IEC 2020 - All rights reserved X



ISO/IEC DIS 15408-3:2020(E)

Introduction

Security assurance components, as defined in this document, are the basis for the security assurance
requirements expressed in a Security Assurance Package, Protection Profile (PP), a PP-Module, a PP-
Configuration, or a Security Target (ST).

These requirements establish a standard way of expressing the assurance requirements for TOEs. This
document catalogues the set of assurance components, families and classes. It also defines evaluation
criteria for PPs, PP-Configurations, PP-Modules, Packages and STs.

The audience for this document includes consumers, developers, technical working groups, evaluators
of secure IT products and others. ISO/IEC 15408-1:XXXX, Clause 5 provides additional information on
the target audience of the ISO/IEC 15408 series, and on the use of the ISO/IEC 15408 series by the
groups that comprise the target audience. These groups may use this document as follows:

a) Consumers, who use this document when selecting components to express assurance
requirements to satisfy the security objectives expressed in a PP or ST, determining required
levels of security assurance of the TOE.

b) Developers, who respond to actual or perceived consumer security requirements in constructing a
TOE, reference this document when interpreting statements of assurance requirements and
determining assurance approaches of TOEs.

c) Evaluators, who use the assurance requirements defined in this document as a mandatory

statement of evaluation criteria when determining the assurance of TOEs and when evaluating
PPs and STs.

© ISO/IEC 2020 - All rights reserved Xi



ISO/IEC DIS 15408-3:2020(E)

Information security, cybersecurity and privacy protection —
Evaluation criteria for IT security — Part 3: Security assurance
components

1 Scope

This document defines the assurance requirements of the ISO/IEC 15408 series. It includes the
individual assurance components from which the evaluation assurance levels and other packages
contained in ISO/IEC 15408-5 are composed, and the criteria for evaluation of Protection Profiles
(PPs), PP-Configurations, PP-Modules, and Security Targets (STs).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies..

ISO/IEC 15408-1, Information security — Evaluation criteria for IT security — Part 1: Introduction and
general model

ISO/IEC 15408-2, Information security — Evaluation criteria for IT security — Part?2: Security
functional components

ISO/IEC 15408-5, Information security — Evaluation criteria for IT security — Part5: Pre-defined
packages of security requirements

3 Terms and definitions, symbols and abbreviated terms

For the purposes of this document, the terms, definitions, symbols and abbreviated terms given in
ISO/IEC 15408-1 apply.

4 QOverview

Clause 5 describes the paradigm used in the security assurance requirements of this document.

Clause 6 describes the presentation structure of the assurance classes, families, components,
evaluation assurance levels along with their relationships, and the structure of the composed
assurance packages. It also characterizes the assurance classes and families found in Clauses 7 through
15.

Clauses 7 through 15 provide the detailed definitions of this document assurance classes.
Annex A provides further explanations and examples of the concepts behind the Development class.

Annex B provides an explanation of the concepts behind composed TOE evaluations and the
Composition class.

Annex C provides a summary of the dependencies between the assurance components.

© ISO/IEC 2020 - All rights reserved 1



ISO/IEC DIS 15408-3:2020(E)

5 Assurance paradigm
5.1 Introduction

The purpose of Clause 5 is to document the philosophy that underpins the ISO/IEC 15408 series
approach to assurance. An understanding of Clause 5 will permit the reader to understand the
rationale behind this document assurance requirements.

5.2 ISO/IEC 15408 philosophy

The ISO/IEC 15408 series philosophy is that the threats to security and organisational security policy
commitments should be clearly articulated and the proposed security controls be demonstrably
sufficient for their intended purpose.

Furthermore, measures should be adopted that reduce the likelihood of vulnerabilities, the ability to
exercise (i.e. intentionally exploit or unintentionally trigger) a vulnerability, and the extent of the
damage that could occur from a vulnerability being exercised. Additionally, measures should be
adopted that facilitate the subsequent identification of vulnerabilities and the elimination, mitigation,
and/or notification that a vulnerability has been exploited or triggered.

5.3 Assurance approach

5.3.1 Introduction

The ISO/IEC 15408 series philosophy is to provide assurance based upon an evaluation of the IT
product that is to be trusted. Evaluation has been the traditional means of providing assurance and is
the basis for prior evaluation criteria documents. In aligning the existing approaches, the ISO/IEC
15408 series adopts the same philosophy. The ISO/IEC 15408 series proposes measuring the validity
of the documentation and of the resulting IT product by expert evaluators with increasing emphasis on
scope, depth, and rigour.

The ISO/IEC 15408 series does not exclude, nor does it comment upon, the relative merits of other
means of gaining assurance. Research continues with respect to alternative ways of gaining assurance.
As mature alternative approaches emerge from these research activities, they will be considered for
inclusion in the ISO/IEC 15408 series, which is so structured as to allow their future introduction.

5.3.2 Significance of vulnerabilities

It is assumed that there are threat agents that will actively seek to exploit opportunities to violate
security policies both for illicit gains and for well-intentioned, but nonetheless insecure actions. Threat
agents may also accidentally trigger security vulnerabilities, causing harm to the organization. Due to
the need to process sensitive information and the lack of availability of sufficiently trusted products,
there is significant risk due to failures of IT. It is, therefore, likely that IT security breaches could lead
to significant loss.

IT security breaches arise through the intentional exploitation or the unintentional triggering of
vulnerabilities in the application of IT within business concerns.

Steps should be taken to prevent vulnerabilities arising in IT products. To the extent feasible,
vulnerabilities should be:

a) eliminated - that is, active steps should be taken to expose, and remove or neutralize, all
exercisable vulnerabilities;

b) minimised - that is, active steps should be taken to reduce, to an acceptable residual level, the
potential impact of any exercise of a vulnerability;

© ISO/IEC 2020 - All rights reserved 2



ISO/IEC DIS 15408-3:2020(E)

c) monitored - that is, active steps should be taken to ensure that any attempt to exercise a residual
vulnerability will be detected so that steps can be taken to limit the damage.

5.3.3 Cause of vulnerabilities

Vulnerabilities can arise through failures in:
a) requirements - that is, an IT product may possess all the functions and features required of it and
still contain vulnerabilities that render it unsuitable or ineffective with respect to security;

b) design - that is, an IT product has been poorly designed. Building a secure product, system, or
application requires not only the implementation of functional requirements but also an
architecture that allows for the effective enforcement of specific security properties the product,
system, or application is supposed to enforce. The ability to withstand attacks the product, system,
or application may be face in its intended operational environment is highly dependent on an
architecture that prohibits those attacks or - if they cannot be prohibited - allows for detection of
such attacks and/or limitation of the damage such an attack can cause;

c) development - that is, an IT product does not meet its specifications and/or vulnerabilities have
been introduced as a result of poor development standards or incorrect design choices;

d) delivery, installation and configuration - that is, an IT product has vulnerabilities introduced
during the delivery, installation and configuration of the product;

e) operation - that is, an IT product has been constructed correctly to a correct specification, but
vulnerabilities have been introduced as a result of inadequate controls upon the operation.

f) maintenance - that is, an IT product is maintained in such a way that new vulnerabilities are
introduced.

5.3.4 ISO/IEC 15408 series assurance
Assurance can be derived from reference to sources such as unsubstantiated assertions, prior relevant
experience, or specific experience. However, the ISO/IEC 15408 series provides assurance through

active investigation or a specification based approach too. Active investigation is an evaluation of the
IT product in order to determine its security properties.

5.3.5 Assurance through evaluation

Evaluation has been the traditional means of gaining assurance, and is the basis of the ISO/IEC 15408
series approach. Evaluation techniques can include, but are not limited to:

a) analysis and checking of process(es) and procedure(s);

b) checking that process(es) and procedure(s) are being applied;

c) analysis of the correspondence between TOE design representations;
d) analysis of the TOE design representation against the requirements;
e) verification of proofs;

f) analysis of guidance documents;

g) analysis of functional tests developed and the results provided;

© ISO/IEC 2020 - All rights reserved 3



ISO/IEC DIS 15408-3:2020(E)

h) independent functional testing;

i) analysis for vulnerabilities (including flaw hypotheses);

j) penetration testing;

k) analysis of the delivery process;

1) analysis of the maintenance process.

5.4 ISO/IEC 15408 series evaluation assurance scale

The ISO/IEC 15408 series philosophy asserts that greater assurance results from the application of
greater evaluation effort, and that the goal is to apply the minimum effort required to provide the
necessary assurance. The increasing level of effort is based upon:

a) scope - thatis, the effort is greater because a larger portion of the IT product is included;

b) depth - that is, the effort is greater because it is deployed to a finer level of design and
implementation detail;

c) rigour - that is, the effort is greater because it is applied in a more structured, formal manner.

6 Security assurance components
6.1 Introduction

The subclauses 6.2 to 6.6 describe the constructs used in representing the assurance classes, families,
and components.

Figure 1 illustrates the security assurance requirements (SARs) defined in this document. Note that
the most abstract collection of SARs is referred to as a class. Each class contains assurance families,
which then contain assurance components, which in turn contain assurance elements. Classes and
families are used to provide a taxonomy for classifying SARs, while components are used to specify
SARs in a PP/ST.

6.2 Assurance class structure

Figure 1 illustrates the assurance class structure.

6.2.1 Class name

Each assurance class is assigned a unique name. The name indicates the topics covered by the
assurance class.

A unique short form of the assurance class name is also provided. This is the primary means for
referencing the assurance class. The convention adopted is an “A” followed by two letters related to
the class name.

6.2.2 Class introduction

Each assurance class has an introductory subclause that describes the composition of the class and
contains supportive text covering the intent of the class.

6.2.3 Assurance families

Each assurance class contains at least one assurance family. The structure of the assurance families is
described in the following subclause.

© ISO/IEC 2020 - All rights reserved 4



ISO/IEC DIS 15408-3:2020(E)

Figure 1 illustrates the assurance family structure.

Common criteria assurance requirements

Assurance class -

Class name
[

Class introduction
[

Assurance family

Family name
Objectives
Component levelling

|

Application notes
I
Assurance componem
[ Component identification
|

|

[ Objectives |
I

[ Application notes |

I |

Dependencies

Assurance element
[
I

Figure 1 — Assurance class/family/component/element hierarchy

6.3 Assurance family structure
6.3.1 Family name

Every assurance family is assigned a unique name. The name provides descriptive information about
the topics covered by the assurance family. Each assurance family is placed within the assurance class
that contains other families with the same intent.

A unique short form of the assurance family name is also provided. This is the primary means used to
reference the assurance family. The convention adopted is that the short form of the class name is
used, followed by an underscore, and then three letters related to the family name.

6.3.2 Objectives

The objectives subclause of the assurance family presents the intent of the assurance family.

This subclause describes the objectives, particularly those related to the ISO/IEC 15408 series
assurance paradigm, that the family is intended to address. The description for the assurance family is

© ISO/IEC 2020 - All rights reserved 5



ISO/IEC DIS 15408-3:2020(E)

kept at a general level. Any specific details required for objectives are incorporated in the particular
assurance component.

6.3.3 Component levelling

Each assurance family contains one or more assurance components. This subclause of the assurance
family describes the components available and explains the distinctions between them. Its main
purpose is to differentiate between the assurance components once it has been determined that the
assurance family is a necessary or useful part of the SARs for a PP/ST.

Assurance families containing more than one component are levelled and rationale is provided as to
how the components are levelled. This rationale is in terms of scope, depth, and/or rigour.

6.3.4 Application notes

The application notes subclause of the assurance family, if present, contains additional information for
the assurance family. This information should be of particular interest to users of the assurance family
(e.g. PP and ST authors, designers of TOEs, evaluators). The presentation is informal and covers, for
example, warnings about limitations of use and areas where specific attention may be required.

6.3.5 Assurance components

Each assurance family has at least one assurance component. The structure of the assurance
components is provided in the following subclause.

6.4 Assurance component structure

6.4.1 Introduction

Figure 2 illustrates the assurance component structure.

Assurance .
component Component

identification

Objectives

Application
notes

Dependencies

Assurance
elements

Figure 2 — Assurance component structure

The relationship between components within a family is highlighted using a bolding convention. Those
parts of the requirements that are new, enhanced or modified beyond the requirements of the
previous component within a hierarchy are bolded.

6.4.2 Component identification

The component identification subclause provides descriptive information necessary to identify,
categorize, register, and reference a component.

© ISO/IEC 2020 - All rights reserved 6



ISO/IEC DIS 15408-3:2020(E)

Every assurance component is assigned a unique name. The name provides descriptive information
about the topics covered by the assurance component. Each assurance component is placed within the
assurance family that shares its security objective.

A unique short form of the assurance component name is also provided. This is the primary means
used to reference the assurance component. The convention used is that the short form of the family
name is used, followed by a period, and then a numeric character. The numeric characters for the
components within each family are assigned sequentially, starting from 1.

6.4.3 Objectives

The objectives subclause of the assurance component, if present, contains specific objectives for the
particular assurance component. For those assurance components that have this subclause, it presents
the specific intent of the component and a more detailed explanation of the objectives.

6.4.4 Application notes

The application notes subclause of an assurance component, if present, contains additional
information to facilitate the use of the component.

6.4.5 Dependencies

Dependencies among assurance components arise when a component is not self-sufficient, and relies
upon the presence of another component.

Each assurance component provides a complete list of dependencies to other assurance components.
Some components may list “No dependencies”, to indicate that no dependencies have been identified.
The components depended upon may have dependencies on other components.

The dependency list identifies the minimum set of assurance components which are relied upon.
Components which are hierarchical to a component in the dependency list may also be used to satisfy
the dependency.

In specific situations the indicated dependencies might not be applicable. The PP, PP-Module, PP-
Configuration or ST author, by providing rationale for why a given dependency is not applicable, may
elect not to satisfy that dependency.

6.4.6 Assurance elements

A set of assurance elements is provided for each assurance component. An assurance element is a
security requirement which, if further divided, would not yield a meaningful evaluation result. It is the
smallest security requirement recognized in the ISO/IEC 15408 series.

Each assurance element is identified as belonging to one of the three sets of assurance elements:

a) Developer action elements: the activities that shall be performed by the developer. This set of
actions is further qualified by evidential material referenced in the following set of elements.
Requirements for developer actions are identified by appending the letter “D” to the element
number.

b) Content and presentation of evidence elements: the evidence required, what the evidence shall
demonstrate, and what information the evidence shall convey. Requirements for content and
presentation of evidence are identified by appending the letter “C” to the element number.

c) Evaluator action elements: the activities that shall be performed by the evaluator. This set of
actions explicitly includes confirmation that the requirements prescribed in the content and
presentation of evidence elements have been met. It also includes explicit actions and analysis that
shall be performed in addition to that already performed by the developer. Implicit evaluator
actions are also to be performed as a result of developer action elements which are not covered by

© ISO/IEC 2020 - All rights reserved 7



ISO/IEC DIS 15408-3:2020(E)

content and presentation of evidence requirements. Requirements for evaluator actions are
identified by appending the letter “E” to the element number.

The developer actions and content and presentation of evidence define the assurance requirements
that are used to represent a developer's responsibilities in demonstrating assurance in the TOE
meeting the SFRs of a PP, PP-Module, PP-Configuration or ST.

The evaluator actions define the evaluator's responsibilities in two aspects of evaluation. The first
aspect is validation of the applicable PP, PP-Module, PP-Configuration or ST, in accordance with the
classes ACE, APE and ASE in Clauses, ACE: ACE: Protection Profile Configuration evaluation, APE:
Protection Profile evaluation and ASE: Security Target evaluation. The second aspect is verification of
the TOE's conformance with its SFRs and SARs. By demonstrating that the PP, PP-Module, PP-
Configuration or ST is valid and that the requirements are met by the TOE, the evaluator can provide a
basis for confidence that the TOE in its operational environment solves the defined security problem.

The developer action elements, content and presentation of evidence elements, and explicit evaluator
action elements, identify the evaluator effort that shall be expended in verifying the security claims
made in the ST of the TOE.

6.5 Assurance elements

Each element represents a requirement to be met. These statements of requirements are intended to
be clear, concise, and unambiguous. Therefore, there are no compound sentences: each separable
requirement is stated as an individual element.

6.6 Component taxonomy
This document contains classes of families and components that are grouped on the basis of related

assurance. At the start of each class is a diagram that indicates the families in the class and the
components in each family.

3]
w

Family 1 1

Figure 3 — Sample class decomposition diagram

In Figure 3, above, the class as shown contains a single family. The family contains three components
that are linearly hierarchical (i.e. component 2 requires more than component 1, in terms of specific
actions, specific evidence, or rigour of the actions or evidence). The assurance families in this
document are all linearly hierarchical, although linearity is not a mandatory criterion for assurance
families that may be added in the future.

7 Class APE: Protection Profile evaluation
7.1 Introduction

Evaluating a PP is required to demonstrate that the PP is sound and internally consistent, and, if the PP
is based on one or more other PPs or on packages, that the PP is a correct instantiation of these PPs
and packages. These properties are necessary for the PP to be suitable for use as the basis for writing
an ST or another PP.

Clause 7 should be used in conjunction with Annexes A, B and C in ISO/IEC 15408-1:2009, as these
annexes clarify the concepts here and provide many examples.

Figure 4 shows the families within this class, and the hierarchy of components within the families.

© ISO/IEC 2020 - All rights reserved 8



ISO/IEC DIS 15408-3:2020(E)

APE_INT: PP introduction

APE_CCL: Conformance claims

APE_SPD: Security problem definition

APE_OB.: Security objectives

APE_ECD: Extended component definition

APE_REQ: Security requirements

LTI T TTT

Figure 4 — APE: Protection Profile evaluation class decomposition

7.2 PP introduction (APE_INT)

7.2.1 Objectives

The objective of this family is to describe the TOE in a narrative way.

Evaluation of the PP introduction is required to demonstrate that the PP is correctly identified, and
that the PP reference and TOE overview are consistent with each other.

7.2.2 APE_INT.1 PP introduction

Dependencies: No dependencies.

Developer action elements

APE_INT.1.1D

The developer shall provide a PP introduction.

Content and presentation elements

APE_INT.1.1C

The PP introduction shall contain a PP reference and a TOE overview.
APE_INT.1.2C

The PP reference shall uniquely identify the PP.

APE_INT.1.3C

The TOE overview shall summarize the usage and major security features of the TOE.
APE_INT.1.4C

The TOE overview shall identify the TOE type.

APE_INT.1.5C

The TOE overview shall identify any non-TOE hardware/software/firmware available to the
TOE.

Evaluator action elements

APE_INT.1.1E

© ISO/IEC 2020 - All rights reserved 9



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

7.3 Conformance claims (APE_CCL)

7.3.1 Objectives

The objective of this family is to determine the validity of the conformance claim. In addition, this
family specifies how STs and other PPs are to claim conformance with the PP.

7.3.2 APE_CCL.1 Conformance claims

Dependencies: APE_INT.1 PP introduction
APE_ECD.1 Extended components definition

APE_REQ.1 Direct rationale PP-Module security requirements
Developer action elements

APE_CCL.1.1D

The developer shall provide a conformance claim.
APE_CCL.1.2D

The developer shall provide a conformance claim rationale.
APE_CCL.1.3D

The developer shall provide a conformance statement.
Content and presentation elements

APE_CCL.1.1C

The conformance claim shall identify the ISO/IEC 15408 edition to which the PP claims
conformance.

APE_CCL.1.2C

The conformance claim shall describe the conformance of the PP to ISO/IEC 15408-2 as either
ISO/IEC 15408-2 conformant or ISO/IEC 15408-2 extended.

APE_CCL.1.3C

The conformance claim shall describe the conformance of the PP as either “ISO/IEC 15408-3
conformant” or “ISO/IEC 15408-3 extended’.”

APE_CCL.1.4C
The conformance claim shall be consistent with the extended components definition.
APE_CCL.1.5C

The conformance claim shall identify all PPs; PP-Configurations and funectienal-packages to
which the PP claims conformance.

APE_CCL.1.6C

The conformance claim shall describe any conformance of the PP to a functional package as one
of package-conformant, package-augmented, or package-tailored.

APE_CCL.1.7C

The conformance claim shall describe any conformance of the PP to an assurance package as
either package-conformant or package-augmented.

© ISO/IEC 2020 - All rights reserved 10



ISO/IEC DIS 15408-3:2020(E)

APE CCL.1.8C

The conformance claim shall describe any conformance of the PP to another PP as PP
Conformant.

APE_CCL.1.8€9C

The conformance claim rationale shall demonstrate that the TOE type is consistent with the
TOE type in the PP(s) er PP-Configurationsforto which conformance is being claimed.
APE_CCL.1.9€10C

The conformance claim rationale shall demonstrate that the statement of the security problem

definition is consistent with the statement of the security problem definition in the PP-
Configuration; PPs and any functional packages for which conformance is being claimed.-

APE_CCL.1.106€11C

The conformance claim rationale shall demonstrate that the statement of security objectives is
consistent with the statement of security objectives in the PP-Configuration,—PPs and any
functional packages for which conformance is being claimed.

APE_CCL.1.11€12C

The conformance claim rationale shall demonstrate that the statement of security
requirements is consistent with the statement of security requirements in the PP-
Configuration; PPs and any functional packages for which conformance is being claimed.

APE_CCL.1.12€13C

The conformance statement shall describe the conformance required of any PPs/STs to the PP
as one of exact, strict, or demonstrable conformance.The-conformance-statement shall deseribe

conformanece.

APE_CCL.1.13€14C

For an exact conformance PP, the conformance statement shall contain an allowed-with
statement that identifies the set of PPs (if any) to which, in combination with the PP under
evaluation, exact conformance is allowed to be claimed.

APE_CCL.1.14€15C

For an exact conformance PP, the conformance statement shall contain an allowed-with
statement that identifies the set of PP-Modules (if any) that are allowed to be used with the PP
under evaluation in a PP-Configuration.

APE_CCL.1.15€16C

The conformance statement shall identify the set of derived Evaluation-Metheds-Evaluation
methods and Evaluation-Aectivities-Evaluation activities (if any) that shall be used with the PP
under evaluation. This list shall contain:

— any Evaluation-Methods-Evaluation methods and Evaluation-Activities-Evaluation activities
that are specified for the PP under evaluation

— any Evaluation-Methods-Evaluation methods and Evaluation-Aectivities-Evaluation activities
specified in conformance statements of PPs to which conformance is being claimed by the
PP under evaluation

© ISO/IEC 2020 - All rights reserved 11



ISO/IEC DIS 15408-3:2020(E)

— any Evaluation-Methods-Evaluation method sand Evaluation-Activities-Evaluation activities
specified in the Security Requirements sections of packages to which conformance is being
claimed by the PP under evaluation.

Evaluator action elements

APE_CCL.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

7.4 Security problem definition (APE_SPD)

7.4.1 Objectives
This part of the PP defines the security problem to be addressed by the TOE and the operational
environment of the TOE.

Evaluation of the security problem definition is required to demonstrate that the security problem
intended to be addressed by the TOE and its operational environment, is clearly defined.

7.4.2 APE_SPD.1 Security problem definition

Dependencies: No dependencies.

Developer action elements

APE_SPD.1.1D

The developer shall provide a security problem definition.
Content and presentation elements

APE_SPD.1.1C

The security problem definition shall describe the threats.
APE_SPD.1.2C

All threats shall be described in terms of a threat agent, an asset, and an adverse action.
APE_SPD.1.3C

The security problem definition shall describe the OSPs.
APE_SPD.1.4C

The security problem definition shall describe the assumptions about the operational
environment of the TOE.

Evaluator action elements
APE_SPD.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

7.5 Security objectives (APE_OB]J)

7.5.1 Objectives

The security objectives are a concise statement of the intended response to the security problem
defined through the Security problem definition (APE_SPD) family.

© ISO/IEC 2020 - All rights reserved 12



ISO/IEC DIS 15408-3:2020(E)

Evaluation of the security objectives is required to demonstrate that the security objectives adequately
and completely address the security problem definition and that the division of this problem between
the TOE and its operational environment is clearly defined.

7.5.2 Component levelling

The components in this family are levelled on whether they prescribe only security objectives for the
operational environment, or also security objectives for the TOE.

7.5.3 APE_OB]J.1 Security objectives for the operational environment

Dependencies: No dependencies.

Developer action elements

APE_OBJ.1.1D

The developer shall provide a statement of security objectives.
APE_OBJ.1.2D

The developer shall provide a security objectives rationale.
Content and presentation elements

APE_OB]J.1.1C

The statement of security objectives shall describe the security objectives for the operational
environment.

APE_OBJ.1.2C

The security objectives rationale shall trace each security objective for the operational
environment back to threats countered by that security objective, OSPs enforced by that
security objective, and assumptions upheld by that security objective.

APE_OBJ.1.3C

The security objectives rationale shall demonstrate that the security objectives for the
operational environment uphold all assumptions.

Evaluator action elements
APE_OBJ.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

7.5.4 APE_OB]J.2 Security objectives

Dependencies: APE_SPD.1 Security problem definition
Developer action elements

APE_OBJ.2.1D

The developer shall provide a statement of security objectives.
APE_OB]J.2.2D

The developer shall provide a security objectives rationale.
Content and presentation elements

APE_OBJ.2.1C

© ISO/IEC 2020 - All rights reserved 13



ISO/IEC DIS 15408-3:2020(E)

The statement of security objectives shall describe the security objectives for the TOE and the
security objectives for the operational environment.

APE_OBJ.2.2C

The security objectives rationale shall trace each security objective for the TOE back to threats
countered by that security objective and OSPs enforced by that security objective.

APE_OBJ.2.3C

The security objectives rationale shall trace each security objective for the operational environment
back to threats countered by that security objective, OSPs enforced by that security objective, and
assumptions upheld by that security objective.

APE_OB]J.2.4C

The security objectives rationale shall demonstrate that the security objectives counter all
threats.

APE_OB]J.2.5C

The security objectives rationale shall demonstrate that the security objectives enforce all
OSPs.

APE_OBJ.2.6C

The security objectives rationale shall demonstrate that the security objectives for the operational
environment uphold all assumptions.

Evaluator action elements
APE_OBJ.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

7.6 Extended components definition (APE_ECD)

7.6.1 Objectives

Extended security requirements are requirements that are not based on components from
ISO/IEC 15408-2 or this document, but are based on extended components: components defined by
the PP author.

Evaluation of the definition of extended components is necessary to determine that they are clear and
unambiguous, and that they are necessary, i.e. they may not be clearly expressed using existing
ISO/IEC 15408-2 or this document components.

7.6.2 APE_ECD.1 Extended components definition

Dependencies: No dependencies.

Developer action elements

APE_ECD.1.1D

The developer shall provide a statement of security requirements.
APE_ECD.1.2D

The developer shall provide an extended components definition.
Content and presentation elements

APE_ECD.1.1C

© ISO/IEC 2020 - All rights reserved 14



ISO/IEC DIS 15408-3:2020(E)

The statement of security requirements shall identify all extended security requirements.
APE_ECD.1.2C

The extended components definition shall define an extended component for each extended
security requirement.

APE_ECD.1.3C

The extended components definition shall describe how each extended component is related to
the existing ISO/IEC 15408 series components, families, and classes.

APE_ECD.1.4C

The extended components definition shall use the existing ISO/IEC 15408 series components,
families, classes, and methodology as a model for presentation.

APE_ECD.1.5C

The extended components shall consist of measurable and objective elements such that
conformance or nonconformance to these elements may be demonstrated.

Evaluator action elements
APE_ECD.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

APE_ECD.1.2E

The evaluator shall confirm that no extended component may be clearly expressed using
existing components.

7.7 Security requirements (APE_REQ)

7.7.1 Objectives

The SFRs form a clear, unambiguous and well-defined description of the expected security behaviour
of the TOE. The SARs form a clear, unambiguous and well-defined description of the expected activities
that will be undertaken to gain assurance in the TOE.

Evaluation of the security requirements is required to ensure that they are clear, unambiguous and
well-defined.

7.7.2 Component levelling

The components in this family are levelled on whether the SFRs are derived from SPDwhetherthey-are
stated-as-is, or whether the SFRs are derived from security objectives for the TOE.

7.7.3 APE_REQ.1 Direct rationale PP-Meodule-security requirements

Dependencies: __ APE_ECD.1 Extended components definition

APE OB]J.1 Security objectives for the operational environment

Developer action elements

APE_REQ.1.1D

The developer shall provide a statement of security requirements.
APE_REQ.1.2D

The developer shall provide a security requirements rationale.

© ISO/IEC 2020 - All rights reserved 15



ISO/IEC DIS 15408-3:2020(E)

Content and presentation elements

APE_REQ.1.1C

The statement of security requirements shall describe the SFRs and the SARs.
APE_REQ.1.2C

All subjects, objects, operations, security attributes, external entities and other terms that are
used in the SFRs and the SARs shall be defined.

APE_REQ.1.4€3C

The statement of security requirements shall identify all operations on the security
requirements.

APE_REQ.1.5€4C
All operations shall be performed correctly.
APE_REQ.1.6€5C

Each dependency of the security requirements shall either be satisfied, or the security
requirements rationale shall justify the dependency not being satisfied.

APE_REQ.1.7€6C

The security requirements rationale shall trace each SFR back to the threats countered by that
SFR and the OSPs enforced by that SFR.

APE_REQ.1.8€7C

The security requirements rationale shall demonstrate that the SFRs (in conjunction with the
security objectives for the environment) counter all threats for the TOE.

APE_REQ.1.9€8C

The security requirements rationale shall demonstrate that the SFRs (in conjunction with the
security objectives for the environment) enforce all OSPs for the TOE.

APE_REQ.1.16€9C

The statement of security requirements shall be internally consistent.
Evaluator action elements

APE_REQ.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

7.7.4 APE_REQ.2 Derived security requirements

Dependencies: APE_OB]J.2 Security objectives

APE_ECD.1 Extended components definition
Developer action elements

APE_REQ.2.1D

© ISO/IEC 2020 - All rights reserved 16



ISO/IEC DIS 15408-3:2020(E)

The developer shall provide a statement of security requirements.
APE_REQ.2.2D

The developer shall provide a security requirements rationale.

Content and presentation elements

APE_REQ.2.1C

The statement of security requirements shall describe the SFRs and the SARs.
APE_REQ.2.2C

All subjects, objects, operations, security attributes, external entities and other terms that are used in
the SFRs and the SARs shall be defined.

APE_REQ.2.3C

The statement of security requirements shall identify all operations on the security requirements.
APE_REQ.2.4C

All operations shall be performed correctly.

APE_REQ.2.5C

Each dependency of the security requirements shall either be satisfied, or the security requirements
rationale shall justify the dependency not being satisfied.

APE_REQ.2.6C

The security requirements rationale shall trace each SFR back to the security objectives for the TOE
enforced by that SFR.

APE_REQ.2.7C

The security requirements rationale shall demonstrate that the SFRs meet all security objectives for
the TOE.

APE_REQ.2.8C

The security requirements rationale shall explain why the SARs were chosen.
APE_REQ.2.9C

The statement of security requirements shall be internally consistent.

Evaluator action elements

APE_REQ.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

8 C(lass ACE: Protection Profile Configuration evaluation
8.1 Introduction

Evaluating a PP-Configuration is required to demonstrate that the PP-Configuration is sound and
consistent. These properties are necessary for the PP-Configuration to be suitable for use as the basis
for writing an ST.

The class ACE is defined for the evaluation of a PP-Configuration composed of at least one PP and one
other component (PPs and/or PP-Modules). The evaluation of PPs is addressed in Class APE. The class
ACE defines the requirements for:

© ISO/IEC 2020 - All rights reserved 17



ISO/IEC DIS 15408-3:2020(E)

— Evaluating the PP-Modules in the framework of their PP-Modules Base(s) (components ACE_INT.1,
ACE_CCL.1, ACE_SPD.1, ACE_OBJ.1 or ACE_OBJ.2, ACE_REQ.1 or ACE_REQ.2, and ACE_MCO.1).

— Evaluating the consistency of the combination of all the PPs and PP-Modules that belong to the PP-
Configuration (see ACE_CCO.1).

Clause 8 should be used in conjunction with Annex C of ISO/IEC 15408-1.

ACE_INT: PP-Module intruduction 1

ACE_CCL: PP-Module conformance claims 1

ACE_SPD: PP-Module Security problem definition 1
ACE_OBJ: PP-Module Security objective 1 2

ACE ECD: PP-Module extended component definition 1
ACE_REQ: PP-Module security requirements 1 2

ACE_MCO: PP-Module consistency 1

ACE_CCO: PP-Configuration consistency 1

Figure 5 — ACE: Protection Profile Configuration evaluation class decomposition

8.2 PP-Module introduction (ACE_INT)

8.2.1 Objectives

The objective of this family is to describe the TOE in a narrative way.

The evaluation of the PP-Module introduction is required to demonstrate that the PP-Module is
correctly identified, and that the PP-Module reference and TOE overview are consistent with each
other.

8.2.2 ACE_INT.1 PP-Module introduction

Dependencies: No dependencies.

Developer action elements

ACE_INT.1.1D

The developer shall provide a PP-Module introduction.
Content and presentation elements

ACE_INT.1.1C

© ISO/IEC 2020 - All rights reserved 18



ISO/IEC DIS 15408-3:2020(E)

The PP-Module introduction shall contain a PP-Module reference, the identification of the PP-
Module Base(s) and a TOE overview.

ACE_INT.1.2C

The PP-Module reference shall uniquely identify the PP-Module.

ACE_INT.1.4€3C

The identification of the PP-Module Base(s) shall describe the dependency structure of the PP-
Module Base(s).

ACE_INT.1.5€4C

The PP-Module introduction shall contain as many TOE overviews as alternative PP-Module
Bases.

ACE_INT.1.6€5C

The TOE overview shall summarize the usage and major security features of the TOE.
ACE_INT.1.7€6C

The TOE overview shall identify the TOE type.

ACE_INT.1.8€7C

The TOE overview shall identify any non-TOE hardware/software/firmware available to the
TOE.

ACE_INT.1.9€8C

The TOE overview shall describe the differences of the TOE with regard to the TOEs defined in
the PP-Module Base(s).

ACE INT.1.9C

The identification of the PP-Module Base shall consist of a list of at least one PP and possibly
other PPs and PP-Modules on which the PP-Module depends.

Evaluator action elements
ACE_INT.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

8.3PP-Module conformance claims (ACE_CCL)
8.3.1 Objectives

The objective of this family is to determine the validity of the conformance claim and conformance
statement. A PP-Module cannot claim conformance to any PP, PP-Configuration, or another PP-Module.

8.3.2 ACE_CCL.1 PP-Module conformance claims

Dependencies: ACE_INT.1 PP-Module introduction
ACE_ECD.1 PP-Module extended components definition

© ISO/IEC 2020 - All rights reserved 19



ISO/IEC DIS 15408-3:2020(E)

ACE_REQ.1 PP-Module stated security requirements or ACE_REQ.2 PP-Module
derived security requirements

Developer action elements

ACE_CCL.1.1D

The developer shall provide a conformance claim.
ACE_CCL.1.2D

The developer shall provide a conformance statement.
Content and presentation elements

ACE_CCL.1.1C

The conformance claim shall identify the ISO/IEC 15408 edition to which the PP-Module claims
conformance.

ACE_CCL.1.2C

The conformance claim shall describe the conformance of the PP-Module to ISO/IEC 15408-2 as
either ISO/IEC 15408-2 conformant or ISO/IEC 15408-2 extended.

ACE_CCL.1.3C

The conformance statement shall describe the conformance type required of any ST to the PP-
Module (as part of a PP-Configuration) as one of exact, strict, or demonstrable.

ACE_CCL.1.4C

The conformance claim shall describe the conformance of the PP-Module to this document as
either “ISO/IEC 15408-3 conformant” or “ISO/IEC 15408-3 extended”.”

ACE_CCL.1.5C
The conformance claim shall be consistent with the extended components definition.
ACE_CCL.1.6C

The conformance claim shall identify all functional packages to which the PP-Module claims
conformance.

ACE_CCL.1.7C

The conformance claim shall describe any conformance of the PP-Module to a functional
package as either package-conformant, package-augmented or package-tailored.

ACE_CCL.1.8C

The conformance claim shall identify all assurance packages to which the PP-Module claims
conformance.

ACE_CCL.1.9C

The conformance claim shall describe any conformance of the PP-Module to an assurance
package as either package-conformant or package-augmented.

ACE_CCL.1.10C

For exact conformance, the PP-Module’s conformance statement shall contain an allowed-with
statement that identifies the set of PPs and PP-Modules (exclusive of those PPs and PP-Modules
that are included in the PP-Module Base) to which, in combination with the PP-Module under
evaluation, exact conformance is allowed to be claimed.

ACE_CCL.1.11C

© ISO/IEC 2020 - All rights reserved 20



ISO/IEC DIS 15408-3:2020(E)

The conformance statement may identify the set of ISO/IEC 18045-derived Evaluation-Metheds
Evaluation methods and Evaluatien-Activities-Evaluation activities that shall be used with the
PP-Module under evaluation. This list shall contain any Evaluatien Metheds—Evaluation
methods and Evaluatien-Activities-Evaluation activities that are specified in the PP-Module but
also any EvaluationMethods Evaluation methods and Evaluation-Aectivities-Evaluation activities
specified in the PP-Module Base(s) and/or in the packages (if any) for which conformance is
being claimed by the PP-Module under evaluation.

Evaluator action elements
ACE_CCL.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

8.4 PP-Module security problem definition (ACE_SPD)

8.4.1 Objectives
This part of the PP-Module defines the security problem to be addressed by the TOE and the
operational environment of the TOE.

Evaluation of the security problem definition is required to demonstrate that the security problem
intended to be addressed by the TOE and its operational environment, is clearly defined.

8.4.2 ACE_SPD.1 PP-Module Security security problem definition

Dependencies: No dependencies.

Developer action elements

ACE_SPD.1.1D

The developer shall provide a security problem definition.
Content and presentation elements

ACE_SPD.1.1C

The security problem definition shall describe the threats.
ACE_SPD.1.2C

All threats shall be described in terms of a threat agent, an asset, and an adverse action.
ACE_SPD.1.3C

The security problem definition shall describe the OSPs.
ACE_SPD.1.4C

The security problem definition shall describe the assumptions about the operational
environment of the TOE.

Evaluator action elements
ACE_SPD.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

© ISO/IEC 2020 - All rights reserved 21



ISO/IEC DIS 15408-3:2020(E)

8.5 PP-Module security objectives (ACE_OB]J)
8.5.1 Objectives
The security objectives are a concise statement of the intended response to the security problem

defined through the Security problem definition (APE_SPD) family.

Evaluation of the security objectives is required to demonstrate that the security objectives adequately
and completely address the security problem definition and that the division of this problem between
the TOE and its operational environment is clearly defined.

8.5.2 Component levelling

The components in this family are levelled on whether they prescribe only security objectives for the
operational environment (see ACE_OB]J.1), or also security objectives for the TOE (see ACE_OB]J.2).

8.5.3 ACE_OB]J.1 DirectRationale- PP-Module security objectives for the operational
environment

Dependencies: No dependencies.

Developer action elements

ACE_OBJ.1.1D

The developer shall provide a statement of security objectives for the PP-Module.
ACE_OBJ.1.2D

The developer shall provide a security objectives rationale for the PP-Module.
Content and presentation elements

ACE_OBJ.1.1C

The statement of security objectives shall describe the security objectives for the operational
environment.

ACE_OB]J.1.2C

The security objectives rationale shall trace each security objective for the operational
environment back to threats countered by that security objective, OSPs enforced by that
security objective, and assumptions upheld by that security objective.

ACE_OB]J.1.3.C

The security objectives rationale shall demonstrate that the security objectives for the
operational environment uphold all assumptions.

Evaluator action elements
ACE_OBJ.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

8.5.4 ACE_OB]J.2 PP-Module security objectives

Dependencies: ACE_SPD.1 PP-Module security problem definition.
Developer action elements
ACE_OBJ.2.1D

The developer shall provide a statement of security objectives for the PP-Module.

© ISO/IEC 2020 - All rights reserved 22



ISO/IEC DIS 15408-3:2020(E)

ACE_OBJ.2.2D

The developer shall provide a security objectives rationale for the PP-Module.
Content and presentation elements

ACE_OBJ.2.1C

The statement of security objectives shall describe the security objectives for the TOE and the
security objectives for the operational environment.

ACE_OB]J.2.2C

The security objectives rationale shall trace each security objective for the TOE back to threats
countered by that security objective and OSPs enforced by that security objective.

ACE_OB]J.2.3C

The security objectives rationale shall trace each security objective for the operational environment
back to threats countered by that security objective, OSPs enforced by that security objective, and
assumptions upheld by that security objective.

ACE_OB]J.2.4C

The security objectives rationale shall demonstrate that the security objectives counter all
threats.

ACE_OBJ.2.5C

The security objectives rationale shall demonstrate that the security objectives enforce all
OSPs.

ACE_OB]J.2.6C

The security objectives rationale shall demonstrate that the security objectives for the operational
environment uphold all assumptions.

Evaluator action elements
ACE_OBJ.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

8.6 PP-Module extended components definition (ACE_ECD)

8.6.1 Objectives

Extended security functional requirements are requirements that are not based on components from
ISO/IEC 15408-2 or this document, but are based on extended components: components defined by
the PP-Module author.

Evaluation of the definition of extended functional components is necessary to determine that they are
clear and unambiguous, and that they are necessary, i.e. they may not be clearly expressed using
existing ISO/IEC 15408-2 or this document components.

8.6.2 ACE_ECD.1 PP-Module extended components definition

Dependencies: No dependencies.
Developer action elements
ACE_ECD.1.1D

The developer shall provide a statement of security requirements for the PP-Module.

© ISO/IEC 2020 - All rights reserved 23



ISO/IEC DIS 15408-3:2020(E)

ACE_ECD.1.2D

The developer shall provide an extended components definition for the PP-Module.

Content and presentation elements

ACE_ECD.1.1C

The statement of security requirements shall identify all the extended security requirements.
ACE_ECD.1.2C

The extended components definition shall define an extended component for each extended
security requirement.

ACE_ECD.1.3C

The extended components definition shall describe how each extended component is related to
the existing ISO/IEC 15408 series components, families, and classes.

ACE_ECD.1.4C

The extended components definition shall use the existing ISO/IEC 15408 series components,
families, classes, and methodology as a model for presentation.

ACE_ECD.1.5C

The extended components shall consist of measurable and objective elements such that
conformance or nonconformance to these elements may be demonstrated

Evaluator action elements
ACE_ECD.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ACE_ECD.1.2E

The evaluator shall confirm that no extended component may be clearly expressed using
existing components.

8.7 PP-Module security requirements (ACE_REQ)

8.7.1 Objectives

The SFRs form a clear, unambiguous and well-defined description of the expected security behaviour
of the TOE. The SARs form a clear, unambiguous and well-defined description of the expected activities
that will be undertaken to gain assurance in the TOE.

Evaluation of the security requirements is required to ensure that they are clear, unambiguous and
well-defined.

8.7.2 Component levelling

The components in this family are levelled on whether the SFRs are derived from SPDwhetherthey-are
stated-asis (see ACE_REQ.1), or whether the SFRs are derived from the security objectives for the TOE
(see ACE_REQ.2.).

8.7.3 ACE_REQ.1 PP-Module stated security requirements

Dependencies: APE_ECD.1 Extended components definition
ACE_SPD.1 PP-Module security problem definition

© ISO/IEC 2020 - All rights reserved 24



ISO/IEC DIS 15408-3:2020(E)

Developer action elements

ACE_REQ.1.1D

The developer shall provide a statement of security requirements for the PP-Module.
ACE_REQ.1.2D

The developer shall provide a security requirements rationale for the PP-Module.
Content and presentation elements

ACE_REQ.1.1C

The statement of security requirements shall describe the SFRs and SARs (the SARs that apply
to the PP-Module may be explicitly stated, or inherited from the PP-Module Base(s)).

ACE_REQ.1.2C

All subjects, objects, operations, security attributes, external entities and other terms that are
used in the SFRs and the SARs shall be defined.

ACE_REQ.1.4€3C

The statement of security requirements shall identify all operations on the security
requirements.

ACE_REQ.1.5€4C
All operations shall be performed correctly.
ACE_REQ.1.6€5C

Each dependency of the security requirements shall either be satisfied, or the security
requirements rationale shall justify the dependency not being satisfied.

ACE_REQ.1.7€6C

The security requirements rationale shall trace each SFR back to the threats countered by that
SFR and the OSPs enforced by that SFR.

ACE_REQ.1.8€7C

The security requirements rationale shall demonstrate that the SFRs (in conjunction with the
security objectives for the environment) counter all the threats for the TOE.

ACE_REQ.1.9€8C

The security requirements rationale shall demonstrate that the SFRs (in conjunction with the
security objectives for the environment) enforce all the OSPs for the TOE.

ACE_REQ.1.16€9C

The security requirements rationale shall explain why the SARs were chosen.
ACE_REQ.1.11€10C

The statement of security requirements shall be internally consistent.

Evaluator action elements

© ISO/IEC 2020 - All rights reserved 25



ISO/IEC DIS 15408-3:2020(E)

ACE_REQ.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

8.7.4 ACE_REQ.2 PP-Module derived security requirements

Dependencies: ACE_ECD.1 PP-Module extended components definition

ACE_OB]J.2 PP-Module security objectives
Developer action elements

ACE_REQ.2.1D

The developer shall provide a statement of security requirements for the PP-Module.
ACE_REQ.2.2D

The developer shall provide a security requirement rationale for the PP-Module.
Content and presentation elements

ACE_REQ.2.1C

The statement of security requirements shall describe the SFRs and SARs (the SARs that apply to the
PP-Module may be explicitly stated, or inherited from the PP-Module Base(s)).

ACE_REQ.2.2C

All subjects, objects, operations, security attributes, external entities and other terms that are used in
the SFRs and the SARs shall be defined.

ACE_REQ.2.3C

The statement of security requirements shall identify all operations on the security requirements.
ACE_REQ.2.4C

All operations shall be performed correctly.

ACE_REQ.2.5C

Each dependency of the security requirements shall either be satisfied, or the security requirements
rationale shall justify the dependency not being satisfied.

ACE_REQ.2.6C

The security requirements rationale shall trace each SFR back to the security objectives for the TOE
enforced by that SFR.

ACE_REQ.2.7C

The security requirements rationale shall demonstrate that the SFRs meet all security objectives for
the TOE.

ACE_REQ.2.8C

The security requirements rationale shall explain why the SARs were chosen.
ACE_REQ.2.9C

The statement of security requirements shall be internally consistent.
Evaluator action elements

ACE_REQ.2.1E

© ISO/IEC 2020 - All rights reserved 26



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

8.8 PP-Module consistency (ACE_MCO)

8.8.1 Objectives

The objective of this family is to determine the consistency of the PP-Module and to state the
correspondence between the PP-Module and its PP-Module Base(s).

8.8.2 ACE_MC(CO.1 PP-Module consistency

Dependencies: ACE_INT.1 PP-Module introduction
ACE_SPD.1 PP-Module Security problem definition

ACE_OB]J.1 Direct Rationale PP-Module Security objectives for the environment or
ACE_OB]J.2 PP-Module Security objectives

ACE_REQ.1 Direct Rationale PP-Module security requirements or ACE_REQ.2 PP-
Module derived security requirements

Developer action elements
ACE_MCO.1.1D

The developer shall provide a consistency rationale of the PP-Module for each of the alternative
PP-Module Bases identified in the PP-Module introduction.

ACE_MCO0.1.2D

The developer shall provide an assurance rationale of the PP-Module for each of the alternative
PP-Module Bases identified in the PP-Module introduction.

Content and presentation elements
ACE_MCO.1.1C

The consistency rationale shall demonstrate that the TOE type of the PP-Module and the TOE
types of its PP-Module Base(s) are consistent.

ACE_MCO0.1.2C

The consistency rationale shall identify the assets of the PP-Module’s SPD that also belong to
some of its PP-Module Bases and amongst them those for which the PP-Module and the PP-
Module Base define different security problems.

ACE_MCO0.1.3C
The consistency rationale shall demonstrate that:
— the statement of the security problem definition is consistent with the statement of the

security problem definition of its PP-Module Base(s);

— the statement of the security problem definition is consistent with the statement of the
security problem definition of any functional package for which conformance is being
claimed.

ACE_MC(CO0.1.4C

The consistency rationale shall demonstrate that:

— the security objectives definition is consistent with the security objectives of its PP-Module
Base(s);

© ISO/IEC 2020 - All rights reserved 27



ISO/IEC DIS 15408-3:2020(E)

— the security objectives definition is consistent with the security objectives of any functional
package for which conformance is being claimed.

ACE_MCO0.1.5C

The consistency rationale shall demonstrate that:

— the security functional requirements definition is consistent with the security functional

requirements of its PP-Modules Base(s);

— the security functional requirements definition is consistent with the security functional
requirements of any functional package for which conformance is being claimed.
ACE_MCO.1.6C

The assurance rationale shall demonstrate the internal consistency of the set of security
assurance requirements of the PP-Module with regard to its security problem definition.

ACE_MCO0.1.7C

The assurance rationale shall demonstrate the consistency of the set of security assurance
requirements of the PP-Module with regard to the security assurance requirements of the PP-
Module Base(s).

Evaluator action elements
ACE_MCO.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence. If the PP-Module specifies alternative PP-Module Bases, the
evaluator shall perform this action for each consistency rationale.

8.9 PP-Configuration consistency (ACE_CCO)

8.9.1 Objectives

The objective of this family is to determine the well-formedness and the consistency of the PP-
Configuration.

8.9.2 ACE_CCO.1 PP-Configuration consistency

Dependencies: ACE_INT.1 PP-Module introduction
ACE_CCL.1 PP-Module conformance claims
ACE_SPD.1 PP-Module security problem definition

ACE_OB]J.1 Direct Rationale PP-Module security objectives for the environment or
ACE_OB]J.2 PP-Module security objectives

ACE_ECD.1 PP-Module extended component definition

ACE_REQ.1 Direct Rational PP-Module security requirements or ACE_REQ.2 PP-
Module derived security requirements

ACE_MCO.1 PP-Module consistency

APE_* (all APE components)
Developer action elements

ACE_CCO.1.1D

The developer shall provide the reference of the PP-Configuration.

© ISO/IEC 2020 - All rights reserved 28



ISO/IEC DIS 15408-3:2020(E)

ACE_CCO0.1.2D

The developer shall provide a components statement.
ACE_CCO0.1.3D

The developer shall provide a TOE overview.
ACE_CC0.1.4D

The developer shall provide a conformance claim.
ACE_CCO.1.5D

The developer shall provide a conformance statement within the conformance claim.
ACE_CCO.1.6D

The developer shall provide a consistency rationale.
ACE_CCO.1.7D

The developer shall provide a SAR statement.
ACE_CCO0.1.8D

The developer shall provide the set of EvaluationMetheds—Evaluation methods and/or
Activities that are applicable to the PP-Configuration.

Content and presentation elements

ACE_CCO.1.1C

The PP-Configuration reference shall uniquely identify the PP-Configuration.
ACE_CCO.1.2C

The PP-Configuration components statement shall uniquely identify the PPs and PP-Modules
that compose the PP-Configuration.

ACE_CCO0.1.3C

For each PP-Module identified in the PP-Configuration components statement, the components
statement shall include the PP-Module Base required by the identified PP-Module. If the PP-
Module specifies alternative PP-Module Bases, only one of these PP-Module Bases shall be
referred to in the PP-Configuration.

ACE_CCO0.1.4C

For a multi-assurance PP-Configuration, the components statement shall describe the
organization of the TSF in terms of the sub-TSFs defined in the PPs and PP-Modules defined in
the PP-Configuration.

ACE_CCO0.1.5C

The TOE overview shall identify the TOE type.

ACE_CCO.1.6C

The TOE overview shall describe the usage and major security features of the TOE.
ACE_CCO0.1.7C

The TOE overview shall identify any non-TOE hardware/software/firmware available to the
TOE.

ACE_CC0.1.8C

© ISO/IEC 2020 - All rights reserved 29



ISO/IEC DIS 15408-3:2020(E)

The conformance claim shall identify the ISO/IEC 15408 edition(s) to which the PP-
Configuration components claim conformance.

ACE_CCO0.1.9C

The conformance claim shall describe the conformance of the PP-Configuration to
ISO/IEC 15408-2 as either ISO/IEC 15408-2 conformant or ISO/IEC 15408-2 extended.

ACE_CCO0.1.10C

The conformance claim shall describe the conformance of the PP-Configuration to this
document as either “ISO/IEC 15408-3 conformant” or ISO/IEC 15408-3 extended.”

ACE_CCO.1.11C

The conformance claim shall be consistent with the conformance claims of the PP-
Configuration components.

ACE_CCO0.1.12C

The conformance claim of a PP-Configuration shall include an assurance package conformance
claim consisting of statements describing any conformance of the PP-Configuration to an
assurance package as either package-conformant or package-augmented.

ACE_CCO0.1.13C

The conformance statement shall specify the required conformance to the PP-Configuration as
one of exact, strict, demonstrable, or it shall provide the list of conformance types that are
required by each of the PP-Configuration components.

ACE_CCO0.1.14C

For the exact conformance case, the allowed-with statement of the conformance statement of
each PP included in the components statement of the PP-Configuration shall identify all the PP-
Configuration components as being allowed to be used in combination with the PP in a PP-
Configuration.

ACE_CCO0.1.15C

For the exact conformance case, the allowed-with statement of the conformance statement of
each PP-Module included in the components statement of the PP-Configuration shall identify all
the PP-Configuration components that are not in the PP-Module Base(s) for that particular PP-
Module as being allowed to be used in combination with the PP-Module in a PP-Configuration.

ACE_CCO0.1.16C

For PP-Configurations that are not of exact conformance type (i.e. for PP-Configurations of
strict or demonstrable conformance type), the conformance statement of a PP-Configuration
may include an Evaluation-Methoeds-Evaluation methods and Evaluatien-Activities-Evaluation
activities reference statement that identifies the set of ISO/IEC 18045-derived Evaluatien
Metheds-Evaluation methods and Evaluatien-Aectivities-Evaluation activities that are applicable
to the PP-Configuration under evaluation.

ACE_CCO0.1.17C

The consistency rationale shall demonstrate that the TOE type defined in the PP-Configuration
is consistent with the TOE types defined in the PPs and PP-Modules that belong to the PP-
Configuration components statement.

ACE_CC0.1.18C

© ISO/IEC 2020 - All rights reserved 30



ISO/IEC DIS 15408-3:2020(E)

The consistency rationale shall demonstrate that the union of all the SPDs, security objectives
and security functional requirements defined in the PP-Configuration components is
consistent.

ACE_CCO0.1.19C

For a single-assurance PP-Configuration, the SAR statement shall define a single set of SARs
that applies to the entire TOE. For strict and demonstrable conformance, the set of SARs shall
include the SARs identified in each of the PP-Configuration components. For exact
conformance, the set of SARs shall be identical to the set of SARs identified in each of the PP-
Configuration components.

ACE_CC0.1.20C

For a multi-assurance PP-Configuration, the SAR statement shall define the global set of SARs
that applies to the entire TOE and the SARs that apply to each sub-TSF. For strict and
demonstrable conformance, the global assurance set of SARs shall include the set of common
SARs among the PP-Configuration components, and each set of SARs that apply to a sub-TSF
shall include those identified for the PP-Configuration components associated with that sub-
TSF. For exact conformance, the global assurance set of SARs shall be the set of common SARs
among the PP-Configuration components, and each set of SARs that apply to a sub-TSF shall be
identical to those identified for the PP-Configuration components associated with that sub-TSF.

ACE_CCO0.1.21C

The SAR statement of a PP-Configuration shall include an assurance rationale that
demonstrates the consistency of the applicable set of SARs with those defined in the
components of the PP-Configuration under evaluation and their associated Evaluation Methods
Evaluation methods and Evaluation Activities. For a multi-assurance PP-Configuration, the
assurance rationale shall demonstrate:

— that the global set of SARs is consistent with the threats as defined in the SPDs of the PP-
Configuration components, and

— that the global set of SARs and the sets of SARs for each sub-TSF are consistent with each
other.

Evaluator action elements

ACE_CCO.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ACE_CCO.1.2E
The evaluator shall check that the PP-Configuration consisting of all the PPs and PP-Modules
identified in the component statement is consistent.

9 C(lass ASE: Security Target evaluation

9.1 Introduction

Evaluating an ST is required to demonstrate that the ST is sound and internally consistent, and, if the
ST is based on a PP-Configuration, or one or more PPs or packages, that the ST is a correct

instantiation of the PP-Configuration, PPs, and packages. These properties are necessary for the ST to
be suitable for use as the basis for a TOE evaluation.

© ISO/IEC 2020 - All rights reserved 31



ISO/IEC DIS 15408-3:2020(E)

Clause 9 should be used in conjunction with Annexes B, C and D in ISO/IEC 15408-1:XXXX, as these
annexes clarify the concepts here and provide many examples.

Figure 6 shows the families within this class, and the hierarchy of components within the families.

ASE_INT: ST introduction 1

ASE_CCL: Conformance claims 1

ASE_SPD: Security problem definition H 1 ‘

ASE_OBJ: Security objectives 1 2

ASE_ECD: Extended component definition 1

ASE_REQ: Security requirements 1 2

ASE_TSS: TOE summary specification H 1 H 2 |

ASE_COMP: Consistency of composite product Security Target 1

Figure 6 — ASE: Security Target evaluation class decomposition

9.2 ST introduction (ASE_INT)
9.2.1 Objectives
The objective of this family is to describe the TOE in a narrative way on three levels of abstraction:

TOE reference, TOE overview and TOE description.

Evaluation of the ST introduction is required to demonstrate that the ST and the TOE are correctly
identified, that the TOE is correctly described at three levels of abstraction and that these three
descriptions are consistent with each other.

9.2.2 ASE_INT.1 ST introduction

Dependencies: No dependencies.

Developer action elements

ASE_INT.1.1D

The developer shall provide an ST introduction.
Content and presentation elements
ASE_INT.1.1C

The ST introduction shall contain an ST reference, a TOE reference, a TOE overview and a TOE
description.

ASE_INT.1.2C

The ST reference shall uniquely identify the ST.
ASE_INT.1.3C

The TOE reference shall uniquely identify the TOE.

© ISO/IEC 2020 - All rights reserved 32



ISO/IEC DIS 15408-3:2020(E)

ASE_INT.1.4C

The TOE overview shall summarize the usage and major security features of the TOE.
ASE_INT.1.5C

The TOE overview shall identify the TOE type.

ASE_INT.1.6C

The TOE overview shall identify any non-TOE hardware/software/firmware required by the
TOE.

ASE_INT.1.7C

For a multi-assurance ST, the TOE overview shall describe the TSF organization in terms of the
sub-TSFs defined in the PP-Configuration the ST claims conformance to.

ASE_INT.1.8C

The TOE description shall describe the physical scope of the TOE.
ASE_INT.1.9C

The TOE description shall describe the logical scope of the TOE.
Evaluator action elements

ASE_INT.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ASE_INT.1.2E

The evaluator shall confirm that the TOE reference, the TOE overview, and the TOE description
are consistent with each other.

9.3 Conformance claims (ASE_CCL)

9.3.1 Objectives

The objective of this family is to determine the validity of the conformance claim. In addition, this
family specifies how STs are to claim conformance with the PP or PP-Configuration.

9.3.2 ASE_CCL.1 Conformance claims

Dependencies: ASE_INT.1 ST introduction
ASE_ECD.1 Extended components definition

ASE_REQ.1 Direct rationale stated security requirements
Developer action elements

ASE_CCL.1.1D

The developer shall provide a conformance claim.
ASE_CCL.1.2D

The developer shall provide a conformance claim rationale.
Content and presentation elements

ASE_CCL.1.1C

© ISO/IEC 2020 - All rights reserved 33



ISO/IEC DIS 15408-3:2020(E)

The conformance claim shall identify the edition of ISO/IEC 15408 to which the ST and the TOE
claim conformance.

ASE_CCL.1.2C

The conformance claim shall describe the conformance of the ST to ISO/IEC 15408-2 as either
ISO/IEC 15408-2 conformant or ISO/IEC 15408-2 extended.

ASE_CCL.1.3C

The conformance claim shall describe the conformance of the ST as either “ISO/IEC 15408-3
conformant” or “ISO/IEC 15408-3 extended’.”

ASE_CCL.1.4C
The conformance claim shall be consistent with the extended components definition.
ASE_CCL.1.5C

The conformance claim shall identify a PP-Configuration, or all PPs and security requirement
packages to which the ST claims conformance.

ASE_CCL.1.6C

The conformance claim shall describe any conformance of the ST to a package as either
package-conformant or package-augmented.

ASE_CCL.1.7C
The conformance claim shall describe any conformance of the ST to a PP as PP-Conformant.
ASE_CCL.1.8C

If the ST claims conformance to a PP-Configuration, the conformance shall be included in the
conformance claim. A ST shall claim conformance to exactly one PP-Configuration and no
additional PP or functional package.

ASE_CCL.1.9C

The conformance claim rationale shall demonstrate that the TOE type is consistent with the
TOE type in the PP-Configuration or PPs for which conformance is being claimed.

ASE_CCL.1.10C

The conformance claim rationale shall demonstrate that the statement of the security problem
definition is consistent with the statement of the security problem definition in the PP-
Configuration!, PPs and any functional packages for which conformance is being claimed.

ASE_CCL.1.11C

The conformance claim rationale shall demonstrate that the statement of security objectives is
consistent with the statement of security objectives in the PP-ConfigurationZ, PPs, and any
functional package for which conformance is being claimed.

ASE_CCL.1.12C

1 In practice, this refers to the union of SPDs defined in the PP-Configuration components.

2 In practice, this refers to the union of security objectives defined in the PP-Configuration components.

© ISO/IEC 2020 - All rights reserved 34



ISO/IEC DIS 15408-3:2020(E)

The conformance claim rationale shall demonstrate that the statement of security
requirements is consistent with the statement of security requirements in the PP-
Configuration?, PPs, and any functional packages for which conformance is being claimed.

ASE_CCL.1.13C

The conformance claim for PP(s) or a PP-Configuration shall be exact, strict, or demonstrable
or a list of conformance types.

ASE_CCL.1.14C

If the conformance claim identifies a set of Evaluation Methods Evaluation methods and
Evaluatien-Activities-Evaluation activities derived from ISO/IEC 18045 work units that shall be
used to evaluate the TOE then this set shall include all those that are included in any package,
PP, or PP-Module in a PP-Configuration to which the ST claims conformance, and no others.

Evaluator action elements
ASE_CCL.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

9.4 Security problem definition (ASE_SPD)

9.4.1 Objectives
This part of the ST defines the security problem to be addressed by the TOE and the operational
environment of the TOE.

Evaluation of the security problem definition is required to demonstrate that the security problem
intended to be addressed by the TOE and its operational environment, is clearly defined.

9.4.2 ASE_SPD.1 Security problem definition

Dependencies: No dependencies.

Developer action elements

ASE_SPD.1.1D

The developer shall provide a security problem definition.
Content and presentation elements

ASE_SPD.1.1C

The security problem definition shall describe the threats.
ASE_SPD.1.2C

All threats shall be described in terms of a threat agent, an asset, and an adverse action.
ASE_SPD.1.3C

The security problem definition shall describe the OSPs.
ASE_SPD.1.4C

3 In practice, this refers to the union of SFRs defined in the PP-Configuration components.

© ISO/IEC 2020 - All rights reserved 35



ISO/IEC DIS 15408-3:2020(E)

The security problem definition shall describe the assumptions about the operational
environment of the TOE.

Evaluator action elements
ASE_SPD.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

9.5 Security objectives (ASE_OB]J)

9.5.1 Objectives
The security objectives are a concise statement of the intended response to the security problem
defined through the Security problem definition (ASE_SPD) family.

Evaluation of the security objectives is required to demonstrate that the security objectives adequately
and completely address the security problem definition, that the division of this problem between the
TOE and its operational environment is clearly defined.

9.5.2 Component levelling

The components in this family are levelled on whether they prescribe only security objectives for the
operational environment (ASE_OB]J.1), or also security objectives for the TOE (ASE_OB]J.2).

9.5.3 ASE_OB].1 Directrationale Security objectives for the operational environment

Dependencies: No dependencies

Developer action elements

ASE_OBJ.1.1D

The developer shall provide a statement of security objectives.
ASE_OB]J.1.2D

The developer shall provide a security objectives rationale.
Content and presentation elements

ASE_OB]J.1.1C

The statement of security objectives shall describe the security objectives for the operational
environment.

ASE_OBJ.1.2C

The security objectives rationale shall trace each security objective for the operational
environment back to threats countered by that security objective, OSPs enforced by that
security objective, and assumptions upheld by that security objective.

ASE_OBJ.1.3C

The security objectives rationale shall demonstrate that the security objectives for the
operational environment uphold all assumptions.

Evaluator action elements
ASE_OBJ.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

© ISO/IEC 2020 - All rights reserved 36



ISO/IEC DIS 15408-3:2020(E)

9.5.4 ASE_OB]J.2 Security objectives

Dependencies: ASE_SPD.1 Security problem definition
Developer action elements

ASE_OB]J.2.1D

The developer shall provide a statement of security objectives.
ASE_OB]J.2.2D

The developer shall provide a security objectives rationale.
Content and presentation elements

ASE_OB]J.2.1C

The statement of security objectives shall describe the security objectives for the TOE and the
security objectives for the operational environment.

ASE_OBJ.2.2C

The security objectives rationale shall trace each security objective for the TOE back to threats
countered by that security objective and OSPs enforced by that security objective.

ASE_OBJ.2.3C

The security objectives rationale shall trace each security objective for the operational environment
back to threats countered by that security objective, OSPs enforced by that security objective, and
assumptions upheld by that security objective.

ASE_OB]J.2.4C
The security objectives rationale shall demonstrate that the security objectives counter all threats.
ASE_OB]J.2.5C

The security objectives rationale shall demonstrate that the security objectives enforce all
OSPs.

ASE_OBJ.2.6C

The security objectives rationale shall demonstrate that the security objectives for the
operational environment uphold all assumptions.

Evaluator action elements
ASE_OBJ.2.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

9.6 Extended components definition (ASE_ECD)

9.6.1 Objectives

Extended security requirements are requirements that are not based on components from
ISO/IEC 15408-2 or this document, but are based on extended components: components defined by
the ST author.

Evaluation of the definition of extended components is necessary to determine that they are clear and
unambiguous, and that they are necessary, i.e. they may not be clearly expressed using existing
ISO/IEC 15408-2 or this document components.

© ISO/IEC 2020 - All rights reserved 37



ISO/IEC DIS 15408-3:2020(E)

9.6.2 ASE_ECD.1 Extended components definition

Dependencies: No dependencies.

Developer action elements

ASE_ECD.1.1D

The developer shall provide a statement of security requirements.

ASE_ECD.1.2D

The developer shall provide an extended components definition.

Content and presentation elements

ASE_ECD.1.1C

The statement of security requirements shall identify all extended security requirements.
ASE_ECD.1.2C

The extended components definition shall define an extended component for each extended
security requirement.

ASE_ECD.1.3C

The extended components definition shall describe how each extended component is related to
the existing ISO/IEC 15408 series components, families, and classes.

ASE_ECD.1.4C

The extended components definition shall use the existing ISO/IEC 15408 series components,
families, classes, and methodology as a model for presentation.

ASE_ECD.1.5C

The extended components shall consist of measurable and objective elements such that
conformance or nonconformance to these elements may be demonstrated.

Evaluator action elements
ASE_ECD.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ASE_ECD.1.2E

The evaluator shall confirm that no extended component may be clearly expressed using
existing components.

9.7 Security requirements (ASE_REQ)

9.7.1 Objectives

The SFRs form a clear, unambiguous and well-defined description of the expected security behaviour
of the TOE. The SARs form a clear, unambiguous and canonical description of the expected activities
that will be undertaken to gain assurance in the TOE.

Evaluation of the security requirements is required to ensure that they are clear, unambiguous and
well-defined.

© ISO/IEC 2020 - All rights reserved 38



ISO/IEC DIS 15408-3:2020(E)

9.7.2 Component levelling
The components in this family are levelled on whether they are stated as is (see ASE_REQ.1), or

whether the SFRs are derived from security objectives for the TOE (see ASE_REQ.2.).
9.7.3 ASE_REQ.1 Direct Ratienale rationale security requirements

Dependencies: ASE_ECD.1 Extended components definition

Developer action elements

ASE_REQ.1.1D

The developer shall provide a statement of security requirements.
ASE_REQ.1.2D

The developer shall provide a security requirements rationale.

Content and presentation elements

ASE_REQ.1.1C

The statement of security requirements shall describe the SFRs and the SARs.
ASE_REQ.1.2C

For a single-assurance ST, the statement of security requirements shall define the global set of
SARs that apply to the entire TOE. The sets of SARs shall be consistent with the PPs or PP-
Configuration to which the ST claims conformance.

ASE_REQ.1.3C

For a multi-assurance ST, the statement of security requirements shall define the global set of
SARs that apply to the entire TOE and the sets of SARs that apply to each sub-TSF. The sets of
SARs shall be consistent with the multi-assurance PP-Configuration to which the ST claims
conformance.

ASE_REQ.1.4C

All subjects, objects, operations, security attributes, external entities and other terms that are
used in the SFRs and the SARs shall be defined.

ASE_REQ.1.5C

The statement of security requirements shall include a natural language description, part of
which describes how the SFRs combine together to provide security functionality in terms of
the architecture that is observable to Administrators and other users, or in terms of internal
features or properties.

ASE_REQ.1.6C

The statement of security requirements shall identify all operations on the security
requirements.

ASE_REQ.1.7C
All operations shall be performed correctly.
ASE_REQ.1.8C

Each dependency of the security requirements shall either be satisfied, or the security
requirements rationale shall justify the dependency not being satisfied.

ASE_REQ.1.9C

© ISO/IEC 2020 - All rights reserved 39



ISO/IEC DIS 15408-3:2020(E)

The security requirements rationale shall demonstrate that the SFRs (in conjunction with the
security objectives for the environment) counter all threats for the TOE.

ASE_REQ.1.10C

The security requirements rationale shall demonstrate that the SFRs (in conjunction with the
security objectives for the environment) enforce all OSPs.

ASE_REQ.1.11C

The security requirements rationale shall explain why the SARs were chosen.
ASE_REQ.1.12C

The statement of security requirements shall be internally consistent.
ASE_REQ.1.13C

If the ST defines sets of SARs that expand the sets of SARs of the PPs or the-PP-Configuration it
claims conformance to, the security requirements rationale shall include an assurance
rationale that justifies the consistency of the extension and provides a rationale for the
disposition of any Evaluatien-Metheds Evaluation methods and Evaluatien-Activities Evaluation
activities identified in the conformance statement that are affected by the extension of the sets
of SARs

Evaluator action elements
ASE_REQ.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

9.7.4 ASE_REQ.2 Derived security requirements

Dependencies: ASE_OB]J.2 Security objectives

ASE_ECD.1 Extended components definition
Developer action elements

ASE_REQ.2.1D

The developer shall provide a statement of security requirements.
ASE_REQ.2.2D

The developer shall provide a security requirements rationale.

Content and presentation elements

ASE_REQ.2.1C

The statement of security requirements shall describe the SFRs and the SARs.
ASE_REQ.2.2C

For a single-assurance ST, the statement of security requirements shall define the global set of SARs
that apply to the entire TOE. The sets of SARs shall be consistent with the PPs or PP-Configuration to
which the ST claims conformance.

ASE_REQ.2.3C

For a multi-assurance ST, the statement of security requirements shall define the global set of SARs
that apply to the entire TOE and the sets of SARs that apply to each sub-TSF. The sets of SARs shall be
consistent with the multi-assurance PP-Configuration to which the ST claims conformance.

ASE_REQ.2.4C

© ISO/IEC 2020 - All rights reserved 40



ISO/IEC DIS 15408-3:2020(E)

All subjects, objects, operations, security attributes, external entities and other terms that are used in
the SFRs and the SARs shall be defined.

ASE_REQ.2.5C

The statement of security requirements shall identify all operations on the security requirements.
ASE_REQ.2.6C

All operations shall be performed correctly.

ASE_REQ.2.7C

Each dependency of the security requirements shall either be satisfied, or the security requirements
rationale shall justify the dependency not being satisfied.

ASE_REQ.2.8C

The security requirements rationale shall demonstrate that the SFRs meet all security
objectives for the TOE.

ASE_REQ.2.9C

The security requirements rationale shall explain why the SARs were chosen.
ASE_REQ.2.10C

The statement of security requirements shall be internally consistent.
ASE_REQ.2.11C

If the ST defines sets of SARs that expand the sets of SARs of the PPs or PP-Configuration it claims
conformance to, the security requirements rationale shall include an assurance rationale that justifies
the consistency of the extension and provides a rationale for the disposition of any EvaluatienMethods
Evaluation methods and EvaluationAetivities—Evaluation activities identified in the conformance
statement that are affected by the extension of the sets of SARs.

Evaluator action elements
ASE_REQ.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

9.8 TOE summary specification (ASE_TSS)

9.8.1 Objectives

The TOE summary specification enables evaluators and potential consumers to gain a general
understanding of how the TOE is implemented.

Evaluation of the TOE summary specification is necessary to determine whether it is adequately
described how the TOE:

— meets its SFRs;
— protects itself against interference, logical tampering and bypass;

and whether the TOE summary specification is consistent with other narrative descriptions of the
TOE.

© ISO/IEC 2020 - All rights reserved 41



ISO/IEC DIS 15408-3:2020(E)

9.8.2 Component levelling

The components in this family are levelled on whether the TOE summary specification only needs to
describe how the TOE meets the SFRs, or whether the TOE summary specification also needs to
describe how the TOE protects itself against logical tampering and bypass. This additional description
may be used in special circumstances where there might be a specific concern regarding the TOE
security architecture.

9.8.3 ASE_TSS.1 TOE summary specification

Dependencies: ASE_INT.1 ST introduction
ASE_REQ.1 Direct rationale stated security requirements

ADV_FSP.1 Basic functional specification
Developer action elements

ASE_TSS.1.1D

The developer shall provide a TOE summary specification.

Content and presentation elements

ASE_TSS.1.1C

The TOE summary specification shall describe how the TOE meets each SFR.
Evaluator action elements

ASE_TSS.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ASE_TSS.1.2E

The evaluator shall confirm that the TOE summary specification is consistent with the TOE
overview and the TOE description.

9.8.4 ASE_TSS.2 TOE summary specification with architectural design summary

Dependencies: ASE_INT.1 ST introduction
ASE_REQ.1 Direct rationale stated security requirements

ADV_ARC.1 Security architecture description
Developer action elements

ASE_TSS.2.1D

The developer shall provide a TOE summary specification.

Content and presentation elements

ASE_TSS.2.1C

The TOE summary specification shall describe how the TOE meets each SFR.
ASE_TSS.2.2C

The TOE summary specification shall describe how the TOE protects itself against interference
and logical tampering.

ASE_TSS.2.3C
The TOE summary specification shall describe how the TOE protects itself against bypass.

© ISO/IEC 2020 - All rights reserved 42



ISO/IEC DIS 15408-3:2020(E)

Evaluator action elements
ASE_TSS.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ASE_TSS.2.2E

The evaluator shall confirm that the TOE summary specification is consistent with the TOE overview
and the TOE description.

9.9 Consistency of composite product Security Target (ASE_COMP)

9.9.1 Objectives

The aim of this family is to determine whether the Security Target of the composite product* does not
contradict the Security Target of the related base component®®,

9.9.2 Component levelling

This family contains only one component.

9.9.49.9.3 Application notes

A Security Target for the composite product has to be written and evaluated.

The composite product evaluator has to examine that the Security Target of the composite product
does not contradict the Security Target of the related base component. In particular, it means that the
composite product evaluator has to examine the composite product Security Target and the base
component Security Target for any conflicting assumptions, compatibility of security objectives,
security requirements and security functionality needed by the dependent component.

The composite product evaluation sponsor shall ensure that the Security Target of the base
component is available for the dependent component developer, for the composite product evaluator
and for the composite product evaluation authority. The information available in the public version of
the base component Security Target may not be sufficient.

These application notes aid the developer to create as well as the evaluator to analyse a composite
product Security Target and describe a general methodology for it.

In order to create a composite product Security Target, the developer should perform the following
steps:

Step 1: The developer formulates a preliminary Security Target for the composite product (the
eompeosite-STcomposite-ST) using the standard code of practice. The esmpesite-SFcomposite-ST can
be formulated independently of the Security Target of the composite product’s related base
component (the base-ST) - at least as long as there are no formal PP conformance claims.

4 denoted by composite product Security Target or eompesite-STcomposite-ST in the following
5 denoted by base component Security Target or base-ST in the following

6 Generally, a Security Target expresses a security policy for the TOE defined.

© ISO/IEC 2020 - All rights reserved 43



ISO/IEC DIS 15408-3:2020(E)

Step 2: The developer determines the overlap between the base-ST and the eempesite-STcomposite-
ST through analysing and comparing their respective TOE Security Functionality (TSF)7 8.

Step 3: The developer determines under which conditions he can trust in and rely on the base
component-TSF being used by the Cempesite-STcomposite-ST without a new examination.

Having undertaken these steps the developer completes the preliminary Security Target for the
composite product.

It is not mandatory that the composite product and its related base component are being evaluated
according to the same edition of ISO/IEC 15408. It is due to the fact that the dependent component of
the composite product can rely on some security services of the base component, if (i) the assurance
level of the base component covers the intended assurance level of the composite product and (ii) the
base component evaluation is valid (i.e. accepted by the base component evaluation authority) and up-
to-date. Equivalence of single assurance components (and, hence, of assurance levels) belonging to
different ISO/IEC 15408 series editions have to be established / acknowledged by the composite
product evaluation authority.

If conformance to a PP is claimed, e.g. a composite product Security Target claims conformance to a PP
(that possibly claims conformance to a further PP), the consistency check can be reduced to the
elements of the Security Target having not already been covered by these PPs. However, in general the
fact of compliance to a PP is not sufficient to avoid inconsistencies. Assume the following situation,
where — stands for “complies with”:

compesite-STcomposite-ST - PP 1 - PP 2 « base-ST

PP 1 may require any kind of conformance?, but this does not affect the ‘additional elements’ that the
base-ST may introduce beyond PP 2. In conclusion, these additions are not necessarily consistent with
the eempesite-STcomposite-ST’s additions chosen beyond PP 1. There is no scenario that ensures their
consistency ‘by construction’.

Note that consistency may be no direct matching: Objectives for the base component’s environment
may become objectives for the composite TOE.

9.9.59.9.4 ASE_COMP.1 Consistency of Security Target

Dependencies: No dependencies
9.9.5.1 Developer action elements
9.9.514.1 ASE_COMP.1.1D

The developer shall provide a statement of compatibility between the composite product
Security Target and the base component Security Target. This statement may be provided
within the composite product Security Target.

9.9.5.2 Content and presentation elements
9.9.5.2.1 ASE_COMP.1.1C

7 because the TSF enforce the Security Target (together with the organisational measures enforcing the security objectives
for the operational environment of the TOE).

8 The comparison shall be performed on the abstraction level of SFRs. If the developer defined security functionality groups
(TSF-groups) in the TSS part of his Security Target, the evaluator should also consider them in order to get a better
understanding for the context of the security services offered by the TOE.

9 e.g. “strict”, “exact” or “demonstrable” according to ISO/IEC 15408

© ISO/IEC 2020 - All rights reserved 44



ISO/IEC DIS 15408-3:2020(E)

The statement of compatibility shall describe the separation of the base component-TSF into
relevant base component-TSF being used by the composite product Security Target and others.

9.9.5.2.2 ASE_COMP.1.2C

The statement of compatibility between the composite product Security Target and the base
component Security Target shall show (e.g. in form of a mapping) that the Security Targets of
the composite product and of the related base component match, i.e. that there is no conflict
between security environments, security objectives, and security requirements of the
composite product Security Target and the base component Security Target. It may be provided
by indicating the concerned elements directly in the composite product Security Target
followed by explanatory text, if necessary.

9.9.5.3 Evaluator action elements
99531 ASE COMP.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

10 Class ADV: Development
10.1 Introduction

The requirements of the Development class provide information about the TOE. The knowledge
obtained by this information is used as the basis for conducting vulnerability analysis and testing upon
the TOE, as described in the AVA and ATE classes.

The Development class encompasses seven families of requirements for structuring and representing
the TSF at various levels and varying forms of abstraction. These families include:

— requirements for the description (at the various levels of abstraction) of the design and
implementation of the SFRs (ADV_FSP, ADV_TDS, ADV_IMP and ADV_COMP)

— requirements for the description of the architecture-oriented features of domain separation, TSF
self-protection and non-bypassability of the security functionality (ADV_ARC)

— requirements for a security policy model and for correspondence mappings between security
policy model and the functional specification (ADV_SPM)

— requirements on the internal structure of the TSF, which covers aspects such as modularity,
layering, and minimization of complexity (ADV_INT)

When documenting the security functionality of a TOE, there are two properties that need to be
demonstrated. The first property is that the security functionality works correctly; that is, it performs
as specified. The second property, and one that is arguably harder to demonstrate, is that the TOE
cannot be used in a way such that the security functionality can be corrupted or bypassed. These two
properties require somewhat different approaches in analysis, and so the families in ADV are
structured to support these different approaches. The families Functional specification (ADV_FSP),
TOE design (ADV_TDS), Implementation representation (ADV_IMP), and Security policy modelling
(ADV_SPM) deal with the first property: the specification of the security functionality. The families
Security Architecture (ADV_ARC) and TSF internals (ADV_INT) deal with the second property: the
specification of the design of the TOE demonstrating the security functionality cannot be corrupted or
bypassed. It should be noted that both properties need to be realized: the more confidence one has
that the properties are satisfied, the more trustworthy the TOE is. The TSF of a composite product are
represented at various levels of abstraction in the families of the development class ADV. The family
Composite design compliance (ADV_COMP) determines whether the requirements on the dependent

© ISO/IEC 2020 - All rights reserved 45



ISO/IEC DIS 15408-3:2020(E)

component, imposed by the related base component, are fulfilled in a composite product. Due to the
distribution of the TSF of a composite product to various levels in the families of the class ADV, this
family is not represented in Figure 7. The components in the families are designed so that more
assurance can be gained as the components hierarchically increase.

The paradigm for the families targeted at the first property is one of design decomposition. At the
highest level, there is a functional specification of the TSF in terms of its interfaces (describing what
the TSF does in terms of requests to the TSF for services and resulting responses), decomposing the
TSF into smaller units (dependent on the assurance desired and the complexity of the TOE) and
describing how the TSF accomplishes its functions (to a level of detail commensurate with the
assurance level), and showing the implementation of the TSF. A formal model of the security
behaviour also may be given. All levels of decomposition are used in determining the completeness
and accuracy of all other levels, ensuring that the levels are mutually supportive. The requirements for
the various TSF representations are separated into different families, to allow the PP/ST author to
specify which TSF representations are required. The level chosen will dictate the assurance
desired/gained.

Figure 7 indicates the relationships among the various TSF representations of the ADV class, as well as
their relationships with other classes. As the figure indicates, the APE and ASE classes define the
requirements for the correspondence between the SFRs and the security objectives for the TOE. Class
ASE also defines requirements for the correspondence between both the security objectives and SFRs,
and for the TOE summary specification which explains how the TOE meets its SFRs. The activities of
ALC_CMC.5.2E include the verification that the TSF that is tested under the ATE and AVA classes is in
fact the one described by all of the ADV decomposition levels.

Source corresponds to target

Security Problem € (reflected in requirements)
A <
Source is refinded in target
APE/ASE_OBJ
Y
A
APE/ASE_REQ
Y ASE_TSS

ADV_COMP
Composite Design >

Mutually supportive analysis performed
over all levels of decomposition

ADV_IMP

Implementation Representation

A

ALC_CMC.5

Y

) ATE, AVA Functional and penetration testing
Implementation @ O>————————— e ) f
activities performed on implementation

Figure 7 — Relationships of ADV constructs to one another and to other families

© ISO/IEC 2020 - All rights reserved 46



ISO/IEC DIS 15408-3:2020(E)

The requirements for all other correspondence shown in Figure 7 are defined in the ADV class for the
TOE. The Security policy modelling (ADV_SPM) family defines the requirements for formally modelling
selected SFRs, and providing correspondence between the functional specification and the formal
model. Each assurance family specific to a TSF representation (i.e. Functional specification (ADV_FSP),
TOE design (ADV_TDS) and Implementation representation (ADV_IMP)) defines requirements relating
that TSF representation to the SFRs. All decompositions must accurately reflect all other
decompositions (i.e. be mutually supportive); the developer supplies the tracings in the last .C
elements of the components. Assurance relating to this factor is obtained during the analysis for each
of the levels of decomposition by referring to other levels of decomposition (in a recursive fashion)
while the analysis of a particular level of decomposition is being performed; the evaluator verifies the
correspondence as part of the second E element. The understanding gained from these levels of
decomposition form the basis of the functional and penetration testing efforts.

The ADV_INT family is not represented in this figure, as it is related to the internal structure of the TSF,
and is only indirectly related to the process of refinement of the TSF representations. Similarly, the
ADV_ARC family is not represented in the figure because it relates to the architectural soundness,
rather than representation, of the TSF. Both ADV_INT and ADV_ARC relate to the analysis of the
property that the TOE cannot be made to circumvent or corrupt its security functionality.

The TOE security functionality (TSF) consists of all parts of the TOE that have to be relied upon for
enforcement of the SFRs. The TSF includes both functionality that directly enforces the SFRs, as well as
functionality that, while not directly enforcing the SFRs, contributes to their enforcement in a more
indirect manner, including functionality with the capability to cause the SFRs to be violated. This
includes portions of the TOE that are invoked on start-up that are responsible for putting the TSF into
its initial secure state.

Several important concepts were used in the development of the components of the ADV families.
These concepts, while introduced briefly here, are explained more fully in the application notes for the
families.

One over-riding notion is that, as more information becomes available, greater assurance can be
obtained that the security functionality 1) is correctly implemented; 2) cannot be corrupted; and 3)
cannot be bypassed. This is done through the verification that the documentation is correct and
consistent with other documentation, and by providing information that can be used to ensure that the
testing activities (both functional and penetration testing) are comprehensive. This is reflected in the
levelling of the components of the families. In general, components are levelled based on the amount of
information that is to be provided (and subsequently analysed).

While not true for all TOEs, it is generally the case that the TSF is sufficiently complex that there are
portions of the TSF that deserve more intense examination than other portions of the TSF.
Determining those portions is unfortunately somewhat subjective, thus terminology and components
have been defined such that as the level of assurance increases, the responsibility for determining
what portions of the TSF need to be examined in detail shifts from the developer to the evaluator. To
aid in expressing this concept, the following terminology is introduced. It should be noted that in the
families of the class, this terminology is used when expressing SFR-related portions of the TOE (that is,
elements and work units embodied in the Functional specification (ADV_FSP), TOE design (ADV_TDS),
and Implementation representation (ADV_IMP) families). While the general concept (that some
portions of the TOE are more interesting than others) applies to other families, the criteria are
expressed differently in order to obtain the assurance required.

All portions of the TSF are security relevant, meaning that they must preserve the security of the TOE
as expressed by the SFRs and requirements for domain separation and non-bypassability. One aspect
of security relevance is the degree to which a portion of the TSF enforces a security requirement. Since
different portions of the TOE play different roles (or no apparent role at all) in enforcing security
requirements, this creates a continuum of SFR relevance: at one end of this continuum are portions of
the TOE that are termed SFR-enforcing. Such portions play a direct role in implementing any SFR on

© ISO/IEC 2020 - All rights reserved 47



ISO/IEC DIS 15408-3:2020(E)

the TOE. Such SFRs refer to any functionality provided by one of the SFRs contained in the ST. It should
be noted that the definition of plays a role in for SFR-enforcing functionality is impossible to express
quantitatively. For example, in the implementation of a Discretionary Access Control (DAC)
mechanism, a very narrow view of SFR-enforcing might be the several lines of code that actually
perform the check of a subject's attributes against the object's attributes. A broader view would
include the software entity (e.g. C function) that contained the several lines of code. A broader view
still would include callers of the C function, since they would be responsible for enforcing the decision
returned by the attribute check. A still broader view would include any code in the call tree (or
programming equivalent for the implementation language used) for that C function (e.g. a sort
function that sorted access control list entries in a first-match algorithm implementation). At some
point, the component is not so much enforcing the security policy but rather plays a supporting role;
such components are termed SFR supporting. One of the characteristics of SFR-supporting
functionality is that it is trusted to preserve the correctness of the SFR implementation by operating
without error. Such functionality may be depended on by SFR-enforcing functionality, but the
dependence is generally at a functional level; for example, memory management, buffer management,
etc. Further down on the security relevance continuum is functionality termed SFR non-interfering.
Such functionality has no role in implementing the SFRs, and is likely part of the TSF because of its
environment; for example, any code running in a privileged hardware mode on an operating system. It
needs to be considered part of the TSF because, if compromised (or replaced by malicious code), it
could compromise the correct operation of an SFR by virtue of its operating in the privileged hardware
mode. An example of SFR non-interfering functionality might be a set of mathematical floating point
operations implemented in kernel mode for speed considerations.

The architecture family (Security Architecture (ADV_ARC)) provides for requirements and analysis of
the TOE based on properties of domain separation, self-protection, and non-bypassability. These
properties relate to the SFRs in that, if these properties are not present, it will likely lead to the failure
of mechanisms implementing SFRs. Functionality and design relating to these properties is not
considered a part of the continuum described above, but instead is treated separately due to its
fundamentally different nature and analysis requirements.

The difference in analysis of the implementation of SFRs (SFR-enforcing and SFR-supporting
functionality) and the implementation of somewhat fundamental security properties of the TOE, which
include the initialisation, self-protection, and non-bypassability concerns, is that the SFR-related
functionality is more or less directly visible and relatively easy to test, while the above-mentioned
properties require varying degrees of analysis on a much broader set of functionality. Further, the
depth of analysis for such properties will vary depending on the design of the TOE. The ADV families
are constructed to address this by a separate family (Security Architecture (ADV_ARC)) devoted to
analysis of the initialisation, self-protection, and non-bypassability requirements, while the other
families are concerned with analysis of the functionality supporting SFRs.

Even in cases where different descriptions are necessary for the multiple levels of abstraction, it is not
absolutely necessary for each and every TSF representation to be in a separate document. Indeed, it
may be the case that a single document meets the documentation requirements for more than one TSF
representation, since it is the information about each of these TSF representations that is required,
rather than the resulting document structure. In cases where multiple TSF representations are
combined within a single document, the developer should indicate which portions of the documents
meet which requirements.

Three types of specification style are mandated by this class: informal, semiformal and formal. The
functional specification and TOE design documentation are always written in either informal or
semiformal style. A semiformal style reduces the ambiguity in these documents over an informal
presentation. A formal specification may also be required in addition to the semi-formal presentation;
the value is that a description of the TSF in more than one way will add increased assurance that the
TSF has been completely and accurately specified.

© ISO/IEC 2020 - All rights reserved 48



ISO/IEC DIS 15408-3:2020(E)

An informal specification is written as prose in natural language. Natural language is used here as
meaning communication in any commonly spoken tongue (e.g. Spanish, German, French, English,
Dutch). An informal specification is not subject to any notational or special restrictions other than
those required as ordinary conventions for that language (e.g. grammar and syntax). While no
notational restrictions apply, the informal specification is also required to provide defined meanings
for terms that are used in a context other than that accepted by normal usage.

The difference between semiformal and informal documents is only a matter of formatting or
presentation: a semiformal notation includes such things as an explicit glossary of terms, a
standardised presentation format, etc. A semiformal specification is written to a standard presentation
template. The presentation should use terms consistently if written in a natural language. The
presentation may also use more structured languages/diagrams (e.g. data-flow diagrams, state
transition diagrams, entity-relationship diagrams, data structure diagrams, and process or program
structure diagrams). Whether based on diagrams or natural language, a set of conventions must be
used in the presentation. The glossary explicitly identifies the words that are being used in a precise
and constant manner; similarly, the standardised format implies that extreme care has been taken in
methodically preparing the document in a manner that maximises clarity. It should be noted that
fundamentally different portions of the TSF may have different semiformal notation conventions and
presentation styles (as long as the number of different “semiformal notations” is small); this still
conforms to the concept of a semiformal presentation.

A formal specification is written in a notation based upon well-established mathematical concepts, and
is typically accompanied by supporting explanatory (informal) prose. These mathematical concepts
are used to define the syntax and semantics of the notation and the proof rules that support logical
reasoning. The syntactic and semantic rules supporting a formal notation should define how to
recognize constructs unambiguously and determine their meaning. There needs to be evidence that it
is impossible to derive contradictions, and all rules supporting the notation need to be defined or
referenced.

Figure 8 shows the families within this class, and the hierarchy of components within the families.

‘ ADV_ARC: Security Architecture FEI

‘ ADV_FSP: Functional specification - n
‘ ADV_IMP: Implementation representation '7

‘ ADV_INT: TSF internals
|
|
|

ADV_SPM: Security policy modelling ,—E‘
] ]
ADV_COMP: Composite design compliance ’—E‘

Figure 8 — ADV: Development class decomposition

In case of a multi-assurance evaluation the requirements for the description (at the various levels of
abstraction) of the design and implementation of the SFRs (ADV_FSP, ADV_TDS, ADV_IMP and
ADV_COMP) will be presented for the sub-TSF of the TOE. The architecture family (Security
Architecture (ADV_ARC)) provides for requirements and analysis of the TOE based on properties of
domain separation, self-protection, and non-bypassability which also may hold for boundaries
between the sub-TSF.

© ISO/IEC 2020 - All rights reserved 49



ISO/IEC DIS 15408-3:2020(E)

10.2 Security Architecture (ADV_ARC)
10.2.1 Objectives

The objective of this family is for the developer to provide a description of the security architecture of
the TSF. This will allow analysis of the information that, when coupled with the other evidence
presented for the TSF, will confirm the TSF achieves the desired properties. The security architecture
descriptions supports the implicit claim that security analysis of the TOE can be achieved by
examining the TSF; without a sound architecture, the entire TOE functionality would have to be
examined.

10.2.2 Component levelling

This family contains only one component.

10.2.3 Application notes

The properties of self-protection, domain separation, and non-bypassability are distinct from security
functionality expressed by ISO/IEC 15408-2 SFRs because self-protection and non-bypassability
largely have no directly observable interface at the TSF. Rather, they are properties of the TSF that are
achieved through the design of the TOE and TSF, and enforced by the correct implementation of that
design.

The approach used in this family is for the developer to design and provide a TSF that exhibits the
above-mentioned properties, and to provide evidence (in the form of documentation) that explains
these properties of the TSF. This explanation is provided at the same level of detail as the description
of the SFR-enforcing elements of the TOE in the TOE design document. The evaluator has the
responsibility for looking at the evidence and, coupled with other evidence delivered for the TOE and
TSF, determining that the properties are achieved.

Specification of security functionality implementing the SFRs (in the Functional specification
(ADV_FSP) and TOE design (ADV_TDS)) will not necessarily describe mechanisms employed in
implementing self-protection and non-bypassability (e.g. memory management mechanisms).
Therefore, the material needed to provide the assurance that these requirements are being achieved is
better suited to a presentation separate from the design decomposition of the TSF as embodied in
ADV_FSP and ADV_TDS. This is not to imply that the security architecture description called for by this
component cannot reference or make use of the design decomposition material; but it is likely that
much of the detail present in the decomposition documentation will not be relevant to the argument
being provided for the security architecture description document.

The description of architectural soundness can be thought of as a developer's vulnerability analysis, in
that it provides the justification for why the TSF is sound and enforces all of its SFRs. Where the
soundness is achieved through specific security mechanisms, these will be tested as part of the Depth
(ATE_DPT) requirements; where the soundness is achieved solely through the architecture, the
behaviour will be tested as part of the AVA: Vulnerability assessment requirements.

This family consists of requirements for a security architecture description that describes the self-
protection, domain separation, non-bypassability principles, including a description of how these
principles are supported by the parts of the TOE that are used for TSF initialisation.

In case of a multi-assurance evaluation the properties of self-protection, domain separation, and
non-bypassability may also be described for boundaries between the sub-TSF.

Additional information on the security architecture properties of self-protection, domain separation,
and non-bypassability can be found in Annex A.1, ADV_ARC: Supplementary material on security
architectures.

© ISO/IEC 2020 - All rights reserved 50



ISO/IEC DIS 15408-3:2020(E)

10.2.4 ADV_ARC.1 Security architecture description

Dependencies: ADV_FSP.1 Basic functional specification

ADV_TDS.1 Basic design
Developer action elements

ADV_ARC.1.1D

The developer shall design and implement the TOE so that the security features of the TSF
cannot be bypassed.

ADV_ARC.1.2D

The developer shall design and implement the TSF so that it is able to protect itself from
tampering by untrusted active entities.

ADV_ARC.1.3D

The developer shall provide a security architecture description of the TSF.
Content and presentation elements

ADV_ARC.1.1C

The security architecture description shall be at a level of detail commensurate with the
description of the SFR-enforcing abstractions described in the TOE design document.

ADV_ARC.1.2C

The security architecture description shall describe the security domains maintained by the
TSF consistently with the SFRs.

ADV_ARC.1.3C

The security architecture description shall describe how the TSF initialisation process is
secure.

ADV_ARC.1.4C

The security architecture description shall demonstrate that the TSF protects itself from
tampering.

ADV_ARC.1.5C

The security architecture description shall demonstrate that the TSF prevents bypass of the
SFR-enforcing functionality.

Evaluator action elements
ADV_ARC.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

10.3 Functional specification (ADV_FSP)

10.3.1 Objectives

This family levies requirements upon the functional specification, which describes the TSF interfaces
(TSFIs). The TSFI consists of all means by which external entities (or subjects in the TOE but outside of
the TSF) supply data to the TSF, receive data from the TSF and invoke services from the TSF. It does
not describe how the TSF processes those service requests, nor does it describe the communication

© ISO/IEC 2020 - All rights reserved 51



ISO/IEC DIS 15408-3:2020(E)

when the TSF invokes services from its operational environment; this information is addressed by the
TOE design (ADV_TDS) and Reliance of dependent component (ACO_REL) families, respectively.

This family provides assurance directly by allowing the evaluator to understand how the TSF meets
the claimed SFRs. It also provides assurance indirectly, as input to other assurance families and
classes:

— ADV_ARC, where the description of the TSFIs may be used to gain better understanding of how the
TSF is protected against corruption (i.e. subversion of self-protection or domain separation)
and/or bypass;

— ATE, where the description of the TSFIs is an important input for both developer and evaluator
testing;

— AVA, where the description of the TSFIs is used to search for vulnerabilities.
10.3.2 Component levelling

The components in this family are levelled on the degree of detail required of the description of the
TSFIs, and the degree of formalism required of the description of the TSFIs.

10.3.3 Application notes

Once the TSFIs are determined (see A.2.2 for guidance and examples of determining TSFI), they are
described. At lower-level components, developers focus their documentation (and evaluators focus
their analysis) on the more security-relevant aspects of the TOE. Three categories of TSFIs are defined,
based upon the relevance the services available through them have to the SFRs being claimed:

— If a service available through an interface can be traced to one of the SFRs levied on the TSF, then
that interface is termed SFR-enforcing. Note that it is possible that an interface may have various
services and results, some of which may be SFR-enforcing and some of which may not.

— Interfaces to (or services available through an interface relating to) services that SFR-enforcing
functionality depends upon, but need only to function correctly in order for the security policies of
the TOE to be preserved, are termed SFR-supporting.

— Interfaces to services on which SFR-enforcing functionality has no dependence are termed SFR
non-interfering.

It should be noted that in order for an interface to be SFR-supporting or SFR non-interfering it must
have no SFR-enforcing services or results. In contrast, an SFR-enforcing interface may have SFR-
supporting services (for example, the ability to set the system clock may be an SFR-enforcing service of
an interface, but if that same interface is used to display the system date that service may be only SFR-
supporting). An example of a purely SFR-supporting interface is a system call interface that is used
both by users and by a portion of the TSF that is running on behalf of users.

As more information about the TSFIs becomes available, the greater the assurance that can be gained
that the interfaces are correctly categorised/analysed. The requirements are structured such that, at
the lowest level, the information required for SFR non-interfering interfaces is the minimum necessary
in order for the evaluator to make this determination in an effective manner. At higher levels, more
information becomes available so that the evaluator has greater confidence in the designation.

The purpose in defining these labels (SFR-enforcing, SFR-supporting, and SFR-non-interfering) and for
levying different requirements upon each (at the lower assurance components) is to provide a first
approximation of where to focus the analysis and the evidence upon which that analysis is performed.
If the developer's documentation of the TSF interfaces describes all of the interfaces to the degree
specified in the requirements for the SFR-enforcing interfaces (that is, if the documentation exceeds

© ISO/IEC 2020 - All rights reserved 52



ISO/IEC DIS 15408-3:2020(E)

the requirements), there is no need for the developer to create new evidence to match the
requirements. Similarly, because the labels are merely a means of differentiating the interface types
within the requirements, there is no need for the developer to update the evidence solely to label the
interfaces as SFR-enforcing, SFR-supporting, and SFR-non-interfering. The primary purpose of this
labelling is to allow developers with less mature development methodologies (and associated
artefacts, such as detailed interface and design documentation) to provide only the necessary evidence
without undue cost.

The last C element of each component within this family provides a direct correspondence between
the SFRs and the functional specification; that is, an indication of which interfaces are used to invoke
each of the claimed SFRs. In the cases where the ST contains such functional requirements as 15408-2,
whose functionality may not manifest itself at the TSFIs, the functional specification and/or the tracing
is expected to identify these SFRs; including them in the functional specification helps to ensure that
they are not lost at lower levels of decomposition, where they will be relevant.

Detail about the Interfaces

The requirements define collections of details about TSFI to be provided. For the purposes of the
requirements, interfaces are specified (in varying degrees of detail) in terms of their purpose, method
of use, parameters, parameter descriptions, and error messages.

The purpose of an interface is a high-level description of the general goal of the interface (e.g. process
GUI commands, receive network packets, provide printer output, etc.).

The interface's method of use describes how the interface is supposed to be used. This description
should be built around the various interactions available at that interface. For instance, if the interface
were a Unix command shell, Is, mv and cp would be interactions for that interface. For each interaction
the method of use describes what the interaction does, both for behaviour seen at the interface (e.g.
the programmer calling the API, the Windows users changing a setting in the registry, etc.) as well as
behaviour at other interfaces (e.g. generating an audit record).

Parameters are explicit inputs to and outputs from an interface that control the behaviour of that
interface. For example, parameters are the arguments supplied to an API; the various fields in a packet
for a given network protocol; the individual key values in the Windows Registry; the signals across a
set of pins on a chip; the flags that can be set for the Is, etc. The parameters are “identified” with a
simple list of what they are.

A parameter description tells what the parameter is in some meaningful way. For instance, an
acceptable parameter description for interface foo(i) would be “parameter i is an integer that indicates
the number of users currently logged in to the system”. A description such as “parameter i is an
integer” is not an acceptable.

The description of an interface's actions describes what the interface does. This is more detailed than
the purpose in that, while the “purpose” reveals why one might want to use it, the “actions” reveals
everything that it does. These actions might be related to the SFRs or not. In cases where the
interface's action is not related to SFRs, its description is said to be summarized, meaning the
description merely makes clear that it is indeed not SFR-related.

The error message description identifies the condition that generated it, what the message is, and the
meaning of any error codes. An error message is generated by the TSF to signify that a problem or
irregularity of some degree has been encountered. The requirements in this family refer to different
kinds of error messages:

— a“direct” error message is a security-relevant response through a specific TSFI invocation.
— an “indirect” error cannot be tied to a specific TSFI invocation because it results from system-wide

conditions (e.g. resource exhaustion, connectivity interruptions, etc.). Error messages that are not
security-relevant are also considered “indirect”.

© ISO/IEC 2020 - All rights reserved 53



ISO/IEC DIS 15408-3:2020(E)

— ‘“remaining” errors are any other errors, such as those that might be referenced within the code.
For example, the use of condition-checking code that checks for conditions that would not logically
occur (e.g. a final “else” after a list of “case” statements), would provide for generating a catch-all
error message; in an operational TOE, these error messages should never be seen.

An example functional specification is provided in A.2.4.

Components of this Family

Increasing assurance through increased completeness and accuracy in the interface specification is
reflected in the documentation required from the developer as detailed in the various hierarchical
components of this family.

At ADV_FSP.1 Basic functional specification, the only documentation required is a characterization of
all TSFIs and a high level description of SFR-enforcing and SFR-supporting TSFIs. To provide some
assurance that the “important” aspects of the TSF have been correctly characterized at the TSFIs, the
developer is required to provide the purpose and method of use, parameters for the SFR-enforcing and
SFR-supporting TSFIs.

At ADV_FSP.2 Security-enforcing functional specification, the developer is required to provide the
purpose, method of use, parameters, and parameter descriptions for all TSFIs. Additionally, for the
SFR-enforcing TSFIs the developer has to describe the SFR-enforcing actions and direct error
messages.

At ADV_FSP.3 Functional specification with complete summary, the developer must now, in addition to
the information required at ADV_FSP.2, provide enough information about the SFR-supporting and
SFR-non-interfering actions to show that they are not SFR-enforcing. Further, the developer must now
document all of the direct error messages resulting from the invocation of SFR-enforcing TSFIs.

At ADV_FSP.4 Complete functional specification, all TSFIs - whether SFR-enforcing, SFR-supporting or
SFR-non-interfering - must be described to the same degree, including all of the direct error messages.

At ADV_FSP.5 Complete semi-formal functional specification with additional error information, the
TSFIs descriptions also include error messages that do not result from an invocation of a TSFI.

At ADV_FSP.6 Complete semi-formal functional specification with additional formal specification, in
addition to the information required by ADV_FSP.5, all remaining error messages are included. The
developer must also provide a formal description of the TSFI. This provides an alternative view of the
TSFI that may expose inconsistencies or incomplete specification.

10.3.4 ADV_FSP.1 Basic functional specification

Dependencies: No dependencies.

Developer action elements

ADV_FSP.1.1D

The developer shall provide a functional specification.

ADV_FSP.1.2D

The developer shall provide a tracing from the functional specification to the SFRs.
Content and presentation elements

ADV_FSP.1.1C

The functional specification shall describe the purpose and method of use for each SFR-
enforcing and SFR-supporting TSFI.

ADV_FSP.1.2C

© ISO/IEC 2020 - All rights reserved 54



ISO/IEC DIS 15408-3:2020(E)

The functional specification shall identify all parameters associated with each SFR-enforcing
and SFR-supporting TSFIL.

ADV_FSP.1.3C

The functional specification shall provide rationale for the implicit categorization of interfaces
as SFR-non-interfering.

ADV_FSP.1.4C

The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.
Evaluator action elements

ADV_FSP.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ADV_FSP.1.2E

The evaluator shall determine that the functional specification is an accurate and complete
instantiation of the SFRs.

10.3.5 ADV_FSP.2 Security-enforcing functional specification

Dependencies: ADV_TDS.1 Basic design

Developer action elements

ADV_FSP.2.1D

The developer shall provide a functional specification.

ADV_FSP.2.2D

The developer shall provide a tracing from the functional specification to the SFRs.
Content and presentation elements

ADV_FSP.2.1C

The functional specification shall completely represent the TSF.

ADV_FSP.2.2C

The functional specification shall describe the purpose and method of use for all TSFI.
ADV_FSP.2.3C

The functional specification shall identify and describe all parameters associated with each TSFIL
ADV_FSP.2.4C

For each SFR-enforcing TSFI, the functional specification shall describe the SFR-enforcing actions
associated with the TSFL

ADV_FSP.2.5C

For each SFR-enforcing TSFI, the functional specification shall describe direct error messages
resulting from processing associated with the SFR-enforcing actions.

ADV_FSP.2.6C
The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.
Evaluator action elements

ADV_FSP.2.1E

© ISO/IEC 2020 - All rights reserved 55



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_FSP.2.2E

The evaluator shall determine that the functional specification is an accurate and complete
instantiation of the SFRs.

10.3.6 ADV_FSP.3 Functional specification with complete summary

Dependencies: ADV_TDS.1 Basic design

Developer action elements

ADV_FSP.3.1D

The developer shall provide a functional specification.

ADV_FSP.3.2D

The developer shall provide a tracing from the functional specification to the SFRs.
Content and presentation elements

ADV_FSP.3.1C

The functional specification shall completely represent the TSF.

ADV_FSP.3.2C

The functional specification shall describe the purpose and method of use for all TSFL
ADV_FSP.3.3C

The functional specification shall identify and describe all parameters associated with each TSFI.
ADV_FSP.3.4C

For each SFR-enforcing TSFI, the functional specification shall describe the SFR-enforcing actions
associated with the TSFI.

ADV_FSP.3.5C

For each SFR-enforcing TSF], the functional specification shall describe direct error messages resulting
from SFR-enforcing actions and exceptions associated with invocation of the TSFI.

ADV_FSP.3.6C

The functional specification shall summarize the SFR-supporting ands SFR-non-interfering
actions associated with each TSFI.

ADV_FSP.3.7C

The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.
Evaluator action elements

ADV_FSP.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_FSP.3.2E

The evaluator shall determine that the functional specification is an accurate and complete
instantiation of the SFRs.

© ISO/IEC 2020 - All rights reserved 56



ISO/IEC DIS 15408-3:2020(E)

10.3.7 ADV_FSP.4 Complete functional specification

Dependencies: ADV_TDS.1 Basic design

Developer action elements

ADV_FSP.4.1D

The developer shall provide a functional specification.

ADV_FSP.4.2D

The developer shall provide a tracing from the functional specification to the SFRs.
Content and presentation elements

ADV_FSP.4.1C

The functional specification shall completely represent the TSF.

ADV_FSP.4.2C

The functional specification shall describe the purpose and method of use for all TSFL
ADV_FSP.4.3C

The functional specification shall identify and describe all parameters associated with each TSFI.
ADV_FSP.4.4C

The functional specification shall describe all actions associated with each TSFI.
ADV_FSP.4.5C

The functional specification shall describe all direct error messages that may result from an
invocation of each TSFI.

ADV_FSP.4.6C

The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.
Evaluator action elements

ADV_FSP.4.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_FSP.4.2E

The evaluator shall determine that the functional specification is an accurate and complete
instantiation of the SFRs.

10.3.8 ADV_FSP.5 Complete semi-formal functional specification with additional error
information
Dependencies: ADV_TDS.1 Basic design

ADV_IMP.1 Implementation representation of the TSF
Developer action elements

ADV_FSP.5.1D
The developer shall provide a functional specification.
ADV_FSP.5.2D

The developer shall provide a tracing from the functional specification to the SFRs.

© ISO/IEC 2020 - All rights reserved 57



ISO/IEC DIS 15408-3:2020(E)

Content and presentation elements

ADV_FSP.5.1C

The functional specification shall completely represent the TSF.

ADV_FSP.5.2C

The functional specification shall describe the TSFI using a semi-formal style.
ADV_FSP.5.3C

The functional specification shall describe the purpose and method of use for all TSFIL.
ADV_FSP.5.4C

The functional specification shall identify and describe all parameters associated with each TSFL
ADV_FSP.5.5C

The functional specification shall describe all actions associated with each TSFI.
ADV_FSP.5.6C

The functional specification shall describe all direct error messages that may result from an invocation
of each TSFI.

ADV_FSP.5.7C

The functional specification shall describe all error messages that do not result from an
invocation of a TSFI.

ADV_FSP.5.8C

The functional specification shall provide a rationale for each error message contained in the
TSF implementation yet does not result from an invocation of a TSFI.

ADV_FSP.5.9C

The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.
Evaluator action elements

ADV_FSP.5.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_FSP.5.2E

The evaluator shall determine that the functional specification is an accurate and complete
instantiation of the SFRs.

10.3.9 ADV_FSP.6 Complete semi-formal functional specification with additional formal
specification
Dependencies: ADV_TDS.1 Basic design

ADV_IMP.1 Implementation representation of the TSF
Developer action elements

ADV_FSP.6.1D
The developer shall provide a functional specification.
ADV_FSP.6.2D

The developer shall provide a formal presentation of the functional specification of the TSF.

© ISO/IEC 2020 - All rights reserved 58



ISO/IEC DIS 15408-3:2020(E)

ADV_FSP.6.3D

The developer shall provide a tracing from the functional specification to the SFRs.
Content and presentation elements

ADV_FSP.6.1C

The functional specification shall completely represent the TSF.

ADV_FSP.6.2C

The functional specification shall describe the TSFI using a formal style.
ADV_FSP.6.3C

The functional specification shall describe the purpose and method of use for all TSFIL.
ADV_FSP.6.4C

The functional specification shall identify and describe all parameters associated with each TSFI.
ADV_FSP.6.5C

The functional specification shall describe all actions associated with each TSFI.
ADV_FSP.6.6C

The functional specification shall describe all direct error messages that may result from an invocation
of each TSFI.

ADV_FSP.6.7C

The functional specification shall describe all error messages contained in the TSF implementation
representation.

ADV_FSP.6.8C

The functional specification shall provide a rationale for each error message contained in the TSF
implementation that is not otherwise described in the functional specification justifying why it is
not associated with a TSFI.

ADV_FSP.6.9C

The formal presentation of the functional specification of the TSF shall describe the TSFI using
a formal style, supported by informal, explanatory text where appropriate.

ADV_FSP.6.10C

The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.
Evaluator action elements

ADV_FSP.6.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_FSP.6.2E

The evaluator shall determine that the functional specification is an accurate and complete
instantiation of the SFRs.

© ISO/IEC 2020 - All rights reserved 59



ISO/IEC DIS 15408-3:2020(E)

10.4 Implementation representation (ADV_IMP)
10.4.1 Objectives

The function of the Implementation representation (ADV_IMP) family is for the developer to make
available the implementation representation (and, at higher levels, the implementation itself) of the
TOE in a form that can be analysed by the evaluator. The implementation representation is used in
analysis activities for other families (analysing the TOE design, for instance) to demonstrate that the
TOE conforms its design and to provide a basis for analysis in other areas of the evaluation (e.g. the
search for vulnerabilities). The implementation representation is expected to be in a form that
captures the detailed internal workings of the TSF. This may be software source code, firmware source
code, hardware diagrams and/or IC hardware design language code or layout data.

10.4.2 Component levelling

The components in this family are levelled on the amount of implementation that is mapped to the
TOE design description.

10.4.3 Application notes

Source code or hardware diagrams and/or IC hardware design language code or layout data that are
used to build the actual hardware are examples of parts of an implementation representation. It is
important to note that while the implementation representation must be made available to the
evaluator, this does not imply that the evaluator needs to possess that representation. For instance,
the developer may require that the evaluator review the implementation representation at a site of the
developer's choosing.

The entire implementation representation is made available to ensure that analysis activities are not
curtailed due to lack of information. This does not, however, imply that all of the representation is
examined when the analysis activities are being performed. This is likely impractical in almost all
cases, in addition to the fact that it most likely will not result in a higher-assurance TOE vs. targeted
sampling of the implementation representation. The implementation representation is made available
to allow analysis of other TOE design decompositions (e.g. functional specification, TOE design), and to
gain confidence that the security functionality described at a higher level in the design actually appear
to be implemented in the TOE. Conventions in some forms of the implementation representation may
make it difficult or impossible to determine from just the implementation representation itself what
the actual result of the compilation or run-time interpretation will be. For example, compiler directives
for C language compilers will cause the compiler to exclude or include entire portions of the code. For
this reason, it is important that such “extra” information or related tools (scripts, compilers, etc.) be
provided so that the implementation representation can be accurately determined.

The purpose of the mapping between the implementation representation and the TOE design
description is to aid the evaluator's analysis. The internal workings of the TOE may be better
understood when the TOE design is analysed with corresponding portions of the implementation
representation. The mapping serves as an index into the implementation representation. At the lower
component, only a subset of the implementation representation is mapped to the TOE design
description. Because of the uncertainty of which portions of the implementation representation will
need such a mapping, the developer may choose either to map the entire implementation
representation beforehand, or to wait to see which portions of the implementation representation the
evaluator requires to be mapped.

The implementation representation is manipulated by the developer in a form that is suitable for
transformation to the actual implementation. For instance, the developer may work with files
containing source code, which is eventually compiled to become part of the TSF. The developer makes
available the implementation representation in the form used by the developer, so that the evaluator
may use automated techniques in the analysis. This also increases the confidence that the

© ISO/IEC 2020 - All rights reserved 60



ISO/IEC DIS 15408-3:2020(E)

implementation representation examined is actually the one used in the production of the TSF (as
opposed to the case where it is supplied in an alternate presentation format, such as a word processor
document). It should be noted that other forms of the implementation representation may also be
used by the developer; these forms are supplied as well. The overall goal is to supply the evaluator
with the information that will maximize the effectiveness of the evaluator's analysis efforts.

Some forms of the implementation representation may require additional information because they
introduce significant barriers to understanding and analysis. Examples include “shrouded” source
code or source code that has been obfuscated in other ways such that it prevents understanding
and/or analysis. These forms of implementation representation typically result from the TOE
developer taking a version of the implementation representation and running a shrouding or
obfuscation program on it. While the shrouded representation is what is compiled and may be closer
to the implementation (in terms of structure) than the original, un-shrouded representation, supplying
such obfuscated code may cause significantly more time to be spent in analysis tasks involving the
representation. When such forms of representation are created, the components require details on the
shrouding tools/algorithms used so that the un-shrouded representation can be supplied, and the
additional information can be used to gain confidence that the shrouding process does not
compromise any security functionality.

10.4.4 ADV_IMP.1 Implementation representation of the TSF

Dependencies: ADV_TDS.3 Basic modular design

ALC_TAT.1 Well-defined development tools
Developer action elements

ADV_IMP.1.1D
The developer shall make available the implementation representation for the entire TSF.
ADV_IMP.1.2D

The developer shall provide a mapping between the TOE design description and the sample of
the implementation representation.

Content and presentation elements
ADV_IMP.1.1C

The implementation representation shall define the TSF to a level of detail such that the TSF
may be generated without further design decisions.

ADV_IMP.1.2C
The implementation representation shall be in the form used by the development personnel.
ADV_IMP.1.3C

The mapping between the TOE design description and the sample of the implementation
representation shall demonstrate their correspondence.

Evaluator action elements
ADV_IMP.1.1E

The evaluator shall confirm that, for the selected sample of the implementation representation,
the information provided meets all requirements for content and presentation of evidence.

10.4.5 ADV_IMP.2 Complete mapping of the implementation representation of the TSF

Dependencies: ADV_TDS.3 Basic modular design

© ISO/IEC 2020 - All rights reserved 61



ISO/IEC DIS 15408-3:2020(E)

ALC_TAT.1 Well-defined development tools
ALC_CMC.5 Advanced support
Developer action elements
ADV_IMP.2.1D
The developer shall make available the implementation representation for the entire TSF.
ADV_IMP.2.2D

The developer shall provide a mapping between the TOE design description and the entire
implementation representation.

Content and presentation elements
ADV_IMP.2.1C

The implementation representation shall define the TSF to a level of detail such that the TSF may be
generated without further design decisions.

ADV_IMP.2.2C
The implementation representation shall be in the form used by the development personnel.
ADV_IMP.2.3C

The mapping between the TOE design description and the entire implementation representation shall
demonstrate their correspondence.

Evaluator action elements
ADV_IMP.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

10.5 TSF internals (ADV_INT)

10.5.1 Objectives

This family addresses the assessment of the internal structure of the TSF. A TSF whose internals are
well-structured is easier to implement and less likely to contain flaws that could lead to
vulnerabilities; it is also easier to maintain without the introduction of flaws.

10.5.2 Component levelling

The components in this family are levelled on the basis of the amount of structure and minimization of
complexity required. ADV_INT.1 Well-structured subset of TSF internals places requirements for well-
structured internals on only selected parts of the TSF. This component is not included in an EAL
because this component is viewed for use in special circumstances (e.g. the sponsor has a specific
concern regarding a cryptographic module, which is isolated from the rest of the TSF) and would not
be widely applicable.

At the next level, the requirements for well-structured internals are placed on the entire TSF. Finally,
minimization of complexity is introduced in the highest component.

10.5.3 Application notes

These requirements, when applied to the internal structure of the TSF, typically result in
improvements that aid both the developer and the evaluator in understanding the TSF, and also
provide the basis for designing and evaluating test suites. Further, improving understandability of the
TSF should assist the developer in simplifying its maintainability.

© ISO/IEC 2020 - All rights reserved 62



ISO/IEC DIS 15408-3:2020(E)

The requirements in this family are presented at a fairly abstract level. The wide variety of TOEs
makes it impossible to codify anything more specific than “well-structured” or “minimum complexity”.
Judgements on structure and complexity are expected to be derived from the specific technologies
used in the TOE. For example, software is likely to be considered well-structured if it exhibits the
characteristics cited in the software engineering disciplines. The components within this family call for
identifying the standards for measuring the characteristic of being well-structured and not overly-
complex.

10.5.4 ADV_INT.1 Well-structured subset of TSF internals

Dependencies: ADV_IMP.1 Implementation representation of the TSF
ADV_TDS.3 Basic modular design

ALC_TAT.1 Well-defined development tools
Objectives

The objective of this component is to provide a means for requiring specific portions of the TSF to be
well-structured. The intent is that the entire TSF has been designed and implemented using sound
engineering principles, but the analysis is performed upon only a specific subset.

Application notes

This component requires the PP or ST author to fill in an assignment with the subset of the TSF. This
subset may be identified in terms of the internals of the TSF at any layer of abstraction. For example:

a) the structural elements of the TSF as identified in the TOE design (e.g. “The developer shall design
and implement the audit subsystem such that it has well-structured internals.”)

b) the implementation (e.g. “The developer shall design and implement the encrypt.c and decrypt.c
files such that it has well-structured internals.” or “The developer shall design and implement the
6227 IC chip such that it has well-structured internals.”)

[t is likely this would not be readily accomplished by referencing the claimed SFRs (e.g. “The developer
shall design and implement the portion of the TSF that provide anonymity as defined in FPR_ANO.2 such
that it has well-structured internals.”) because this does not indicate where to focus the analysis.

This component has limited value and would be suitable in cases where potentially-malicious
users/subjects have limited or strictly controlled access to the TSFIs or where there is another means
of protection (e.g. domain separation) that ensures the chosen subset of the TSF cannot be adversely
affected by the rest of the TSF (e.g. the cryptographic functionality, which is isolated from the rest of
the TSF, is well-structured).

Developer action elements
ADV_INT.1.1D

The developer shall design and implement [assignment: subset of the TSF] such that it has well-
structured internals.

ADV_INT.1.2D

The developer shall provide an internals description and justification.
Content and presentation elements

ADV_INT.1.1C

The justification shall explain the characteristics used to judge the meaning of “well-
structured”.

ADV_INT.1.2C

© ISO/IEC 2020 - All rights reserved 63



ISO/IEC DIS 15408-3:2020(E)

The TSF internals description shall demonstrate that the assigned subset of the TSF is well-
structured.

Evaluator action elements
ADV_INT.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ADV_INT.1.2E

The evaluator shall perform an internals analysis on the assigned subset of the TSF.
10.5.5 ADV_INT.2 Well-structured internals

Dependencies: ADV_IMP.1 Implementation representation of the TSF
ADV_TDS.3 Basic modular design

ALC_TAT.1 Well-defined development tools
Objectives

The objective of this component is to provide a means for requiring the TSF to be well-structured. The
intent is that the entire TSF has been designed and implemented using sound engineering principles.

Application notes

Judgements on the adequacy of the structure are expected to be derived from the specific technologies
used in the TOE. This component calls for identifying the standards for measuring the characteristic of
being well-structured.

Developer action elements

ADV_INT.2.1D

The developer shall design and implement the entire TSF such that it has well-structured internals.
ADV_INT.2.2D

The developer shall provide an internals description and justification.

Content and presentation elements

ADV_INT.2.1C

The justification shall describe the characteristics used to judge the meaning of “well-structured”.
ADV_INT.2.2C

The TSF internals description shall demonstrate that the entire TSF is well-structured.

Evaluator action elements

ADV_INT.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_INT.2.2E

The evaluator shall perform an internals analysis on the TSF.
10.5.6 ADV_INT.3 Minimally complex internals

Dependencies: ADV_IMP.1 Implementation representation of the TSF

© ISO/IEC 2020 - All rights reserved 64



ISO/IEC DIS 15408-3:2020(E)

ADV_TDS.3 Basic modular design

ALC_TAT.1 Well-defined development tools
Objectives

The objective of this component is to provide a means for requiring the TSF to be well-structured and
of minimal complexity. The intent is that the entire TSF has been designed and implemented using
sound engineering principles.

Application notes

Judgements on the adequacy of the structure and complexity are expected to be derived from the
specific technologies used in the TOE. This component calls for identifying the standards for
measuring the structure and complexity.

Developer action elements

ADV_INT.3.1D

The developer shall design and implement the entire TSF such that it has well-structured internals.
ADV_INT.3.2D

The developer shall provide an internals description and justification.

Content and presentation elements

ADV_INT.3.1C

The justification shall describe the characteristics used to judge the meaning of “well-structured” and
“complex”.

ADV_INT.3.2C

The TSF internals description shall demonstrate that the entire TSF is well-structured and is not
overly complex.

Evaluator action elements
ADV_INT.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_INT.3.2E

The evaluator shall perform an internals analysis on the entire TSF.

10.6 Seeurity policymodellingFormal TSF model (ADV_SPM)
10.6.1 Objectives

10-6-2 It is the objective of this family to provide additional assurance through the development of a
formal representation of the TSF and its properties, as defined by the SFRs and the security objectives

of the ST, further referred to as the formal model and the formal properties, respectively. It is expected
to establish by means of a formal proof that these formal properties hold in the formal model and to
establish by means of a correspondence rationale that the TOE functional specification preserves the
formal properties proven for the formal model. A formal proof or semiformal demonstration of
preservation of the formal properties in the formal or semiformal specification is expected if the latter

exists (ADV FSP.5 or ADV FSP.6, respectively) tt-is-the-ebjective-of this family to-provideadditional

© ISO/IEC 2020 - All rights reserved 65



ISO/IEC DIS 15408-3:2020(E)

10.6.310.6.2 Component levelling

This family contains only one component.
10.6:410.6.3 Application notes

Inadequacies in a TOE can result either from a failure in understanding the security requirements or
from a flawed implementation of those security requirements. Defining the security requirements

adequately to ensure their understanding may be problematic because the definition must be
sufficiently precise to prevent undesired results or subtle flaws during the implementation of the TOE.
Throughout the design, implementation, and review processes, a formal representation of the TSF and
its properties may be used as precise design and implementation guidance, thereby providing
increased assurance that the SFRs and the security objectives of the ST are satisfied by the TOE. The
resulting guidance and the precision of the TSF representation and its properties, as defined by the

SFRs and the security objectives of the ST, are significantly improved by defining the formal model and

specifying the formal properties using a formal language and providing a formal proof that these
formal properties hold in the formal model.

The creation of a formal Security Policy Model (SPM) of the TSF must be complete with respect to the

ST; such a model helps to identify and eliminate ambiguous, inconsistent, contradictory, or

unenforceable elements and to avoid any misunderstanding on the scope. To this end, the evaluation
must determine whether the formal model and the formal properties completely cover the ST and

accept only STs and SPMs that match in scope. Once the TOE has been built, the formal model serves
the evaluation effort by contributing to the evaluator's judgement of how well the developer has
understood the TSF being implemented and whether there are inconsistencies between the formal

properties as defined by the security objectives of the ST and the TOE design. The confidence gained

by formally proving properties of the model is accompanied by confidence gained by defining a
correspondence rationale between the formal model and the TOE functional specification (as defined

for ADV FSP). The correspondence rationale consists of a formal proof when mapping to formal
aspects of the TOE functional specification and semiformal demonstration otherwise. A combination of
different formal systems (modelling languages, tools, proof systems) can be used for different parts of
the ST (SFRs & Security Objectives) and correspondence rationales.

A formal security model is a formal representation of the important aspects of security (i.e. the TSF)
and their relationship to the behaviour of the TOE. More precisely, the formal model is a formal
representation of the TSF as defined by the entire set of SFRs described in the ST and the set of formal
properties covers all the security objectives for the TOE.

© ISO/IEC 2020 - All rights reserved 66



ISO/IEC DIS 15408-3:2020(E)

Dependencies: ASE OBJ.2 Security Objectives
ASE REQ.2DV_ESP5 Complete ormal-fu
error-information Derived security requirements

ADV_FSP.6-4 Complete functional specificationComplete—semi-formalfunetional
ficati h additional £ | Ficati

Developer action elements
ADV_SPM.1.1D

© ISO/IEC 2020 - All rights reserved 67



ISO/IEC DIS 15408-3:2020(E)

The developer shall provide a formal seecurity peliecy-model for the TSF_ supported by
explanatory text. FSElbehaviour of the TOE:

ADV_SPM.1.2D

The developer shall provide the set of formal properties for the TOE supported by explanatory

model:
ADV_SPM.1.3D

The developer shall provide a formal proof that the model satisfies the formal properties
pported by explanatory text!lhe—feFmal—seethy—peheyAnedel—shanﬂent}fy—the—medeHed

a
)

ADV_SPM.1.4D

The developer shall provide a correspondence rationale between the formal model and the
functional specification.Fer-all TSEls-that-are notmedelled by the formal security policymeodel;
hed 1 hallidentify ¢l £ 1 SER i . licies in the ST.

ADV_SPM.1.5D

The developer shall provide a semi-formal demonstration of correspondence between the
formal model and any semi-formal functional specnflcatlonillhe—develeper—shall—p;:ewde—a

ADV_SPM.1.6D

The developer shall provide a formal proof of correspondence between the formal model and
any formal functional specification.
ADV SPM.1.7D

The developer shall provide all the tools used for the formal model, the formal properties,
proofsanddemonstratlons he develope hall previde-a-d 0 ation of correspond 0

correspendence bebweenmedelelements nnd T0ES,
Content and presentation elements
ADV SPM.1.1C

The formal model, properties and proofs shall be defined using a well-founded mathematical
theory.

ADV SPM.1.2C

The explanatory text shall cover the entire formal model, formal properties and proofs,
including instructions for reproducing the proofs and the correspondence rationale, and it
shall provide a rationale for the modelling and verification choices.

© ISO/IEC 2020 - All rights reserved 68



ISO/IEC DIS 15408-3:2020(E)

ADV SPM.1.3C

The formal model shall cover the complete set of SFRs that define the TSF.
ADV SPM.1.4C

The formal properties shall cover the complete set of security objectives for the TOE.

ADV SPM.1.5C

The formal proof shall show that the formal model satisfies all the formal properties and that
the consistency of the underlying mathematical theory is preserved.

ADV SPM.1.6C

The correspondence rationale shall show that the formal properties proven for the formal
model hold for the functional specification.

ADV SPM.1.7C

The semi-formal demonstration of correspondence shall show that the formal properties
proven for the formal model hold for any semi-formal functional specification.

ADV SPM.1.8C

The formal proof of correspondence shall show that the properties proven for the formal
model hold for any formal functional specification.

ADV SPM.1.9C

Any tool used to model or to prove the formal properties or the relationship between the
formal model and the functional specification shall be well-defined and unambiguously

identified and it shall be accompanied by documentation and a rationale of the tool’s suitability
and trustworthiness.

© ISO/IEC 2020 - All rights reserved 69



ISO/IEC DIS 15408-3:2020(E)

Evaluator action elements

ADV_SPM.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

10.7 TOE design (ADV_TDS)

10.7.1 Objectives

The design description of a TOE provides both context for a description of the TSF, and a thorough
description of the TSF. As assurance needs increase, the level of detail provided in the description also
increases. As the size and complexity of the TSF increase, multiple levels of decomposition are
appropriate. The design requirements are intended to provide information (commensurate with the
given assurance level) so that a determination can be made that the security functional requirements
are realized.

10.7.2 Component levelling

The components in this family are levelled on the basis of the amount of information that is required
to be presented with respect to the TSF, and on the degree of formalism required of the design
description.

10.7.3 Application notes

The goal of design documentation is to provide sufficient information to determine the TSF boundary,
and to describe how the TSF implements the Security Functional Requirements. The amount and
structure of the design documentation will depend on the complexity of the TOE and the number of
SFRs; in general, a very complex TOE with a large number of SFRs will require more design
documentation than a very simple TOE implementing only a few SFRs. Very complex TOEs will benefit
(in terms of the assurance provided) from the production of differing levels of decomposition in
describing the design, while very simple TOEs do not require both high-level and low-level
descriptions of its implementation.

This family uses two levels of decomposition: the subsystem and the module. A module is the most
specific description of functionality: it is a description of the implementation. A developer should be
able to implement the part of the TOE described by the module with no further design decisions. A
subsystem is a description of the design of the TOE; it helps to provide a high-level description of what
a portion of the TOE is doing and how. As such, a subsystem may be further divided into lower-level
subsystems, or into modules. Very complex TOEs might require several levels of subsystems in order
to adequately convey a useful description of how the TOE works. Very simple TOEs, in contrast, might
not require a subsystem level of description; the module might clearly describe how the TOE works.

The general approach adopted for design documentation is that, as the level of assurance increases,
the emphasis of description shifts from the general (subsystem level) to more (module level) detail. In

© ISO/IEC 2020 - All rights reserved 70



ISO/IEC DIS 15408-3:2020(E)

cases where a module-level of abstraction is appropriate because the TOE is simple enough to be
described at the module level, yet the level of assurance calls for a subsystem level of description, the
module-level description alone will suffice. For complex TOEs, however, this is not the case: an
enormous amount of (module-level) detail would be incomprehensible without an accompanying
subsystem level of description.

This approach follows the general paradigm that providing additional detail about the implementation
of the TSF will result in greater assurance that the SFRs are implemented correctly, and provide
information that can be used to demonstrate this in testing (ATE: Tests).

In the requirements for this family, the term interface is used as the means of communication
(between two subsystems or modules). It describes how the communication is invoked; this is similar
to the details of TSFI (see Functional specification (ADV_FSP)). The term interaction is used to identify
the purpose for communication; it identifies why two subsystems or modules are communicating.

Detail about the Subsystems and Modules
The requirements define collections of details about subsystems and modules to be provided:

a) The subsystems and modules are identified with a simple list of what they are.

b) Subsystems and modules may be categorised (either implicitly or explicitly) as “SFR-enforcing”,
“SFR-supporting”, or “SFR-non-interfering”; these terms are used the same as they are used in
Functional specification (ADV_FSP).

c) A subsystem's behaviour is what it does. The behaviour may also be categorised as SFR-enforcing,
SFR-supporting, or SFR-non-interfering. The behaviour of the subsystem is never categorised as
more SFR-relevant than the category of the subsystem itself. For example, an SFR-enforcing
subsystem can have SFR-enforcing behaviour as well as SFR-supporting or SFR-non-interfering
behaviour.

d) A behaviour summary of a subsystem is an overview of the actions it performs (e.g. “The TCP
subsystem assembles IP datagrams into reliable byte streams”).

e) A behaviour description of a subsystem is an explanation of everything it does. This description
should be at a level of detail that one can readily determine whether the behaviour has any
relevance to the enforcement of the SFRs.

f) A description of interactions among or between subsystems or modules identifies the reason that
subsystems or modules communicate, and characterizes the information that is passed. It need
not define the information to the same level of detail as an interface specification. For example, it
would be sufficient to say “subsystem X requests a block of memory from the memory manager,
which responds with the location of the allocated memory.

g) A description of interfaces provides the details of how the interactions among modules are
achieved. Rather than describing the reason the modules are communicating or the purpose of
their communication (that is, the description of interactions), the description of interfaces
describes the details of how that communication is accomplished, in terms of the structure and
contents of the messages, semaphores, internal process communications, etc.

h) The purpose describes how a module provides their functionality. It provides sufficient detail that
no further design decisions are needed. The correspondence between the implementation
representation that implements the module, and the purpose of the module should be readily
apparent.

i) A module is otherwise described in terms of whatever is identified in the element.

© ISO/IEC 2020 - All rights reserved 71



ISO/IEC DIS 15408-3:2020(E)

Subsystems and modules, and “SFR-enforcing”, etc. are all further explained in greater detail in A.4,
ADV_TDS: Subsystems and Modules.

10.7.4 ADV_TDS.1 Basic design

Dependencies: ADV_FSP.2 Security-enforcing functional specification
Developer action elements

ADV_TDS.1.1D

The developer shall provide the design of the TOE.

ADV_TDS.1.2D

The developer shall provide a mapping from the TSFI of the functional specification to the
lowest level of decomposition available in the TOE design.

Content and presentation elements

ADV_TDS.1.1C

The design shall describe the structure of the TOE in terms of subsystems.
ADV_TDS.1.2C

The design shall identify all subsystems of the TSF.

ADV_TDS.1.3C

The design shall provide the behaviour summary of each SFR-supporting or SFR-non-
interfering TSF subsystem.

ADV_TDS.1.4C
The design shall summarize the SFR-enforcing behaviour of the SFR-enforcing subsystems.
ADV_TDS.1.5C

The design shall provide a description of the interactions among SFR-enforcing subsystems of
the TSF, and between the SFR-enforcing subsystems of the TSF and other subsystems of the TSF.

ADV_TDS.1.6C

The mapping shall demonstrate that all TSFIs trace to the behaviour described in the TOE
design that they invoke.

Evaluator action elements
ADV_TDS.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ADV_TDS.1.2E

The evaluator shall determine that the design is an accurate and complete instantiation of all
security functional requirements.

10.7.5 ADV_TDS.2 Architectural design

Dependencies: ADV_FSP.3 Functional specification with complete summary
Developer action elements

ADV_TDS.2.1D

The developer shall provide the design of the TOE.

© ISO/IEC 2020 - All rights reserved 72



ISO/IEC DIS 15408-3:2020(E)

ADV_TDS.2.2D

The developer shall provide a mapping from the TSFI of the functional specification to the lowest level
of decomposition available in the TOE design.

Content and presentation elements

ADV_TDS.2.1C

The design shall describe the structure of the TOE in terms of subsystems.
ADV_TDS.2.2C

The design shall identify all subsystems of the TSF.

ADV_TDS.2.3C

The design shall provide the behaviour summary of each SFR non-interfering subsystem of the
TSF.

ADV_TDS.2.4C
The design shall describe the SFR-enforcing behaviour of the SFR-enforcing subsystems.
ADV_TDS.2.5C

The design shall summarize the SFR-supporting and SFR-non-interfering behaviour of the SFR-
enforcing subsystems.

ADV_TDS.2.6C

The design shall summarize the behaviour of the SFR-supporting subsystems.

ADV_TDS.2.7C

The design shall provide a description of the interactions among all subsystems of the TSF.
ADV_TDS.2.8C

The mapping shall demonstrate that all TSFIs trace to the behaviour described in the TOE design that
they invoke.

Evaluator action elements
ADV_TDS.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_TDS.2.2E

The evaluator shall determine that the design is an accurate and complete instantiation of all security
functional requirements.

10.7.6 ADV_TDS.3 Basic modular design

Dependencies: ADV_FSP.4 Complete functional specification
Developer action elements

ADV_TDS.3.1D

The developer shall provide the design of the TOE.
ADV_TDS.3.2D

The developer shall provide a mapping from the TSFI of the functional specification to the lowest level
of decomposition available in the TOE design.

© ISO/IEC 2020 - All rights reserved 73



ISO/IEC DIS 15408-3:2020(E)

Content and presentation elements

ADV_TDS.3.1C

The design shall describe the structure of the TOE in terms of subsystems.

ADV_TDS.3.2C

The design shall describe the TSF in terms of modules.

ADV_TDS.3.3C

The design shall identify all subsystems of the TSF.

ADV_TDS.3.4C

The design shall provide a description of each subsystem of the TSF.

ADV_TDS.3.5C

The design shall provide a description of the interactions among all subsystems of the TSF.
ADV_TDS.3.6C

The design shall provide a mapping from the subsystems of the TSF to the modules of the TSF.
ADV_TDS.3.7C

The design shall describe each SFR-enforcing module in terms of its purpose and relationship
with other modules.

ADV_TDS.3.8C

The design shall describe each SFR-enforcing module in terms of its SFR-related interfaces,
return values from those interfaces, interaction with other modules and called SFR-related
interfaces to other SFR-enforcing modules.

ADV_TDS.3.9C

The design shall describe each SFR-supporting and SFR-non-interfering module in terms of its
purpose and interaction with other modules.

ADV_TDS.3.10C

The mapping shall demonstrate that all TSFIs trace to the behaviour described in the TOE design that
they invoke.

Evaluator action elements
ADV_TDS.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_TDS.3.2E

The evaluator shall determine that the design is an accurate and complete instantiation of all security
functional requirements.

10.7.7 ADV_TDS.4 Semiformal modular design

Dependencies: ADV_FSP.5 Complete semi-formal functional specification with additional error
information

Developer action elements

ADV_TDS.4.1D

© ISO/IEC 2020 - All rights reserved 74



ISO/IEC DIS 15408-3:2020(E)

The developer shall provide the design of the TOE.
ADV_TDS.4.2D

The developer shall provide a mapping from the TSFI of the functional specification to the lowest level
of decomposition available in the TOE design.

Content and presentation elements

ADV_TDS.4.1C

The design shall describe the structure of the TOE in terms of subsystems.
ADV_TDS.4.2C

The design shall describe the TSF in terms of modules, designating each module as SFR-enforcing,
SFR-supporting, or SFR-non-interfering.

ADV_TDS.4.3C
The design shall identify all subsystems of the TSF.
ADV_TDS.4.4C

The design shall provide a semiformal description of each subsystem of the TSF, supported by
informal, explanatory text where appropriate.

ADV_TDS.4.5C

The design shall provide a description of the interactions among all subsystems of the TSF.
ADV_TDS.4.6C

The design shall provide a mapping from the subsystems of the TSF to the modules of the TSF.
ADV_TDS.4.7C

The design shall describe each SFR-enforcing and SFR-supporting module in terms of its purpose and
relationship with other modules.

ADV_TDS.4.8C

The design shall describe each SFR-enforcing and SFR-supporting module in terms of its SFR-related
interfaces, return values from those interfaces, interaction with other modules and called SFR-related
interfaces to other SFR-enforcing or SFR-supporting modules.

ADV_TDS.4.9C

The design shall describe each SFR-non-interfering module in terms of its purpose and interaction
with other modules.

ADV_TDS.4.10C

The mapping shall demonstrate that all TSFIs trace to the behaviour described in the TOE design that
they invoke.

Evaluator action elements
ADV_TDS.4.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_TDS.4.2E

The evaluator shall determine that the design is an accurate and complete instantiation of all security
functional requirements.

© ISO/IEC 2020 - All rights reserved 75



ISO/IEC DIS 15408-3:2020(E)

10.7.8 ADV_TDS.5 Complete semiformal modular design

Dependencies: ADV_FSP.5 Complete semi-formal functional specification with additional error
information

Developer action elements

ADV_TDS.5.1D

The developer shall provide the design of the TOE.

ADV_TDS.5.2D

The developer shall provide a mapping from the TSFI of the functional specification to the lowest level
of decomposition available in the TOE design.

Content and presentation elements

ADV_TDS.5.1C

The design shall describe the structure of the TOE in terms of subsystems.
ADV_TDS.5.2C

The design shall describe the TSF in terms of modules, designating each module as SFR-enforcing, SFR-
supporting, or SFR-non-interfering.

ADV_TDS.5.3C
The design shall identify all subsystems of the TSF.
ADV_TDS.5.4C

The design shall provide a semiformal description of each subsystem of the TSF, supported by
informal, explanatory text where appropriate.

ADV_TDS.5.5C

The design shall provide a description of the interactions among all subsystems of the TSF.
ADV_TDS.5.6C

The design shall provide a mapping from the subsystems of the TSF to the modules of the TSF.
ADV_TDS.5.7C

The design shall provide a semiformal description of each module in terms of its purpose,
interaction, interfaces, return values from those interfaces, and called interfaces to other modules,
supported by informal, explanatory text where appropriate.

ADV_TDS.5.8C

The mapping shall demonstrate that all TSFIs trace to the behaviour described in the TOE design that
they invoke.

Evaluator action elements
ADV_TDS.5.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_TDS.5.2E

The evaluator shall determine that the design is an accurate and complete instantiation of all security
functional requirements.

© ISO/IEC 2020 - All rights reserved 76



ISO/IEC DIS 15408-3:2020(E)

10.7.9 ADV_TDS.6 Complete semiformal modular design with formal high-level design
presentation

Dependencies: ADV_FSP.6 Complete semi-formal functional specification with additional formal
specification

Developer action elements

ADV_TDS.6.1D

The developer shall provide the design of the TOE.

ADV_TDS.6.2D

The developer shall provide a mapping from the TSFI of the functional specification to the lowest level
of decomposition available in the TOE design.

ADV_TDS.6.3D
The developer shall provide a formal specification of the TSF subsystems.
ADV_TDS.6.4D

The developer shall provide a proof of correspondence between the formal specifications of the
TSF subsystems and of the functional specification.

Content and presentation elements

ADV_TDS.6.1C

The design shall describe the structure of the TOE in terms of subsystems.
ADV_TDS.6.2C

The design shall describe the TSF in terms of modules, designating each module as SFR-enforcing, SFR-
supporting, or SFR-non-interfering.

ADV_TDS.6.3C
The design shall identify all subsystems of the TSF.
ADV_TDS.6.4C

The design shall provide a semiformal description of each subsystem of the TSF, supported by
informal, explanatory text where appropriate.

ADV_TDS.6.5C

The design shall provide a description of the interactions among all subsystems of the TSF.
ADV_TDS.6.6C

The design shall provide a mapping from the subsystems of the TSF to the modules of the TSF.
ADV_TDS.6.7C

The design shall describe each module in semiformal style in terms of its purpose, interaction,
interfaces, return values from those interfaces, and called interfaces to other modules, supported by
informal, explanatory text where appropriate.

ADV_TDS.6.8C

The formal specification of the TSF subsystems shall describe the TSF using a formal style,
supported by informal, explanatory text where appropriate.

ADV_TDS.6.9C

© ISO/IEC 2020 - All rights reserved 77



ISO/IEC DIS 15408-3:2020(E)

The mapping shall demonstrate that all TSFIs trace to the behaviour described in the TOE design that
they invoke.

ADV_TDS.6.10C

The proof of correspondence between the formal specifications of the TSF subsystems and of
the functional specification shall demonstrate that all behaviour described in the TOE design is
a correct and complete refinement of the TSFI that invoked it.

Evaluator action elements
ADV_TDS.6.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ADV_TDS.6.2E

The evaluator shall determine that the design is an accurate and complete instantiation of all security
functional requirements.

10.8 Composite design compliance (ADV_COMP)

10.8.1 Objectives

The aim of this family is to determine whether the requirements on the dependent component,
imposed by the related base component, are fulfilled in the composite product.

10.8.2 Component levelling

This family contains only one component.

10.8.3 Application notes

The requirements on the dependent component, imposed by the related base component, can be
formulated in the relevant base component-related user guidance, ETR for composite evaluation (in
form of observations and recommendations) and report of the base component evaluation authority
(e.g. in form of constraints and recommendations). The developer of the dependent component shall
regard each of these sources, if available-{ef—TFable 2, Clause 14-in-1SOHEC15408-15, and implement
the dependent component in such a way that the applicable requirements are fulfilled. The composite
product evaluator shall verify that all stipulations for the dependent component that are imposed by
the base component and provided in its evaluation related documentation are fulfilled by the
composite product, i.e. have been taken into account by the dependent component developer.

The composite product evaluation sponsor shall ensure that the following is made available for the
composite product evaluator:

— the base component-related user guidance,

— the base component-related ETR for composite evaluation prepared by the base component
evaluator,

— the report of the base component evaluation authority,

— a rationale for secure composite product implementation including evidence prepared by the
dependent component developer.

The TSF of the composite product are represented at various levels of abstraction in the families of the

development class ADV. From experience, the appropriate levels of design representation for
examining, whether the requirements of the base component are fulfilled by the composite product,

© ISO/IEC 2020 - All rights reserved 78



ISO/IEC DIS 15408-3:2020(E)

are the TOE design (ADV_TDS), security architecture (ADV_ARC) and the implementation (ADV_IMP).
In case that, these design representation levels are not available (e.g. due to the assurance package
chosen is EAL1), the current family is not applicable (see the next paragraph for the reason).

Due to the definition of the composite product {ef——Subelause 13322 in1SOHEC15408-1the

interface between its base component and dependent component is the internal one, hence, a
functional specification (ADV_FSP) as representation level is not appropriate for analysing the design
compliance.

Security architecture ADV_ARC as assurance family is dedicated to ensure that integrative security
services like domain separation, self-protection and non-bypassability properly work. It is impossible
and not the sense of the composite evaluation to have an insight into the architectural internals of the
related base component (it is a matter of the base component evaluation). What the composite product
evaluator has to do in the context of ADV_ARC is

i. to determine whether the applicatien—dependent component uses services of the underlying
platformrelated base component within its own Cempesite-STcomposite product Security Target
to provide domain separation, self-protection, non-bypassability and protected start-up; if no,
there is-are no further composite activities for ADV_ARGC; if yes, then

ii. the evaluator has to determine, whether the dependent component uses these services of the base
component in an appropriate/secure way: (please refer to the base component user guidance).-

As consistency of the composite product security policy has already been considered in the context of
the Security Target in the assurance family ASE_COMP, there is no necessity to consider non-
contradictoriness of the security policy model (ADV_SPM) of the composite product and the security
policy model of its related base component.

10.8.4 ADV_COMP.1 Design compliance with the base component-related user guidance, ETR
for composite evaluation and report of the base component evaluation authority

Dependencies: No dependencies

10.84-1  Developer action elements

10.84-1.1 ADV_COMP.1.1D

The developer shall provide a design compliance justification
10.8:4-2  Content and presentation elements

10.8.4-2.1 ADV_COMP.1.1C

The design compliance justification shall provide a rationale for design compliance - on an
appropriate representation level - of how the requirements on the dependent component that
are imposed by the related base component are fulfilled in the composite product.

10.8.4.3 Evaluator action elements
10.8.4.31 ADV_COMP.1.1E

The evaluator shall confirm that the rationale for design compliance is complete, coherent, and
internally consistent.

11 Class AGD: Guidance documents
11.1 Introduction

The guidance documents class provides the requirements for guidance documentation for all user
roles. For the secure preparation and operation of the TOE it is necessary to describe all relevant

© ISO/IEC 2020 - All rights reserved 79



ISO/IEC DIS 15408-3:2020(E)

aspects for the secure handling of the TOE. The class also addresses the possibility of unintended
incorrect configuration or handling of the TOE.

In many cases it may be appropriate that guidance is provided in separate documents for preparation
and operation of the TOE, or even separate for different user roles as end-users, administrators,
application programmers using software or hardware interfaces, etc.

The guidance documents class is subdivided into two families which are concerned with the
preparative user guidance (what has to be done to transform the delivered TOE into its evaluated
configuration in the operational environment as described in the ST) and with the operational user
guidance (what has to be done during the operation of the TOE in its evaluated configuration).

Figure 9 shows the families within this class, and the hierarchy of components within the families.

AGD_OPE: Operational user guide 1

AGD_PRE: Preparative procedures 1

Figure 9 — AGD: Guidance documents class decomposition

11.2 Operational user guidance (AGD_OPE)
11.2.1 Objectives

Operational user guidance refers to written material that is intended to be used by all types of users of
the TOE in its evaluated configuration: end-users, persons responsible for maintaining and
administering the TOE in a correct manner for maximum security, and by others (e.g. programmers)
using the TOE's external interfaces. Operational user guidance describes the security functionality
provided by the TSF, provides instructions and guidelines (including warnings), helps to understand
the TSF and includes the security-critical information, and the security-critical actions required, for its
secure use. Misleading and unreasonable guidance should be absent from the guidance
documentation, and secure procedures for all modes of operation should be addressed. Insecure states
should be easy to detect.

The operational user guidance provides a measure of confidence that non-malicious users,
administrators, application providers and others exercising the external interfaces of the TOE will
understand the secure operation of the TOE and will use it as intended. The evaluation of the user
guidance includes investigating whether the TOE can be used in a manner that is insecure but that the
user of the TOE would reasonably believe to be secure. The objective is to minimize the risk of human
or other errors in operation that may deactivate, disable, or fail to activate security functionality,
resulting in an undetected insecure state.

11.2.2 Component levelling

This family contains only one component.

11.2.3 Application notes

There may be different user roles or groups that are recognized by the TOE and that can interact with
the TSF. These user roles and groups should be taken into consideration by the operational user
guidance. They may be roughly grouped into administrators and non-administrative users, or more
specifically grouped into persons responsible for receiving, accepting, installing and maintaining the
TOE, application programmers, revisors, auditors, daily-management, end-users. Each role can
encompass an extensive set of capabilities, or can be a single one.

© ISO/IEC 2020 - All rights reserved 80



ISO/IEC DIS 15408-3:2020(E)

The requirement AGD_OPE.1.1C encompasses the aspect that any warnings to the users during
operation of a TOE with regard to the security problem definition and the security objectives for the
operational environment described in the PP/ST are appropriately covered in the user guidance.

The concept of secure values, as employed in AGD_OPE.1.3C, has relevance where a user has control
over security parameters. Guidance needs to be provided on secure and insecure settings for such
parameters.

AGD_OPE.1.4C requires that the user guidance describes the appropriate reactions to all security-
relevant events. Although many security-relevant events are the result of performing functions, this
need not always be the case (e.g. the audit log fills up, an intrusion is detected). Furthermore, a
security-relevant event may happen as a result of a specific chain of functions or, conversely, several
security-relevant events may be triggered by one function.

AGD_OPE.1.7C requires that the user guidance is clear and reasonable. Misleading or unreasonable
guidance may result in a user of the TOE believing that the TOE is secure when it is not.

An example of misleading guidance would be the description of a single guidance instruction that
could be parsed in more than one way, one of which may result in an insecure state.

An example of unreasonable guidance would be a recommendation to follow a procedure that is so
complicated that it cannot reasonably be expected that users will follow this guidance.

11.2.4 AGD_OPE.1 Operational user guidance

Dependencies: ADV_FSP.1 Basic functional specification
Developer action elements

AGD_OPE.1.1D

The developer shall provide operational user guidance.
Content and presentation elements

AGD_OPE.1.1C

The operational user guidance shall describe, for each user role, the user-accessible functions
and privileges that should be controlled in a secure processing environment, including
appropriate warnings.

AGD_OPE.1.2C

The operational user guidance shall describe, for each user role, how to use the available
interfaces provided by the TOE in a secure manner.

AGD_OPE.1.3C

The operational user guidance shall describe, for each user role, the available functions and
interfaces, in particular all security parameters under the control of the user, indicating secure
values as appropriate.

AGD_OPE.1.4C

The operational user guidance shall, for each user role, clearly present each type of security-
relevant event relative to the user-accessible functions that need to be performed, including
changing the security characteristics of entities under the control of the TSF.

AGD_OPE.1.5C

The operational user guidance shall identify all possible modes of operation of the TOE
(including operation following failure or operational error), their consequences and
implications for maintaining secure operation.

© ISO/IEC 2020 - All rights reserved 81



ISO/IEC DIS 15408-3:2020(E)

AGD_OPE.1.6C

The operational user guidance shall, for each user role, describe the security controls to be
followed in order to fulfil the security objectives for the operational environment as described
in the ST.

AGD_OPE.1.7C

The operational user guidance shall be clear and reasonable.
Evaluator action elements

AGD_OPE.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

11.3 Preparative procedures (AGD_PRE)

11.3.1 Objectives

Preparative procedures are useful for ensuring that the TOE has been received and installed in a
secure manner as intended by the developer. The requirements for preparation call for a secure
transition from the delivered TOE to its initial operational environment. This includes investigating
whether the TOE can be configured or installed in a manner that is insecure but that the user of the
TOE would reasonably believe to be secure.

11.3.2 Component levelling

This family contains only one component.

11.3.3 Application notes

It is recognized that the application of these requirements will vary depending on aspects such as
whether the TOE is delivered in an operational state, or whether it has to be installed at the TOE
owner's site, etc.

The first process covered by the preparative procedures is the consumer's secure acceptance of the
received TOE in accordance with the developer's delivery procedures. If the developer has not defined
delivery procedures, security of the acceptance has to be ensured otherwise.

Installation of the TOE includes transforming its operational environment into a state that conforms to
the security objectives for the operational environment provided in the ST.

[t might also be the case that no installation is necessary, for example a smart card. In this case it may
be inappropriate to require and analyse installation procedures.

The requirements in this assurance family are presented separately from those in the Operational user
guidance (AGD_OPE) family, due to the infrequent, possibly one-time use of the preparative
procedures.

11.3.4 AGD_PRE.1 Preparative procedures

Dependencies: No dependencies.

Developer action elements

AGD_PRE.1.1D

The developer shall provide the TOE including its preparative procedures.
Content and presentation elements

AGD_PRE.1.1C

© ISO/IEC 2020 - All rights reserved 82



ISO/IEC DIS 15408-3:2020(E)

The preparative procedures shall describe all the steps necessary for secure acceptance of the
delivered TOE in accordance with the developer's delivery procedures.

AGD_PRE.1.2C

The preparative procedures shall describe all the steps necessary for secure installation of the
TOE and for the secure preparation of the operational environment in accordance with the
security objectives for the operational environment as described in the ST.

Evaluator action elements
AGD_PRE.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

AGD_PRE.1.2E

The evaluator shall apply the preparative procedures to confirm that the TOE can be prepared
securely for operation.

12 Class ALC: Life-cycle support
12.1 Introduction

Life-cycle support is an aspect of establishing appropriate security controls in the development,
production, delivery and maintenance of the TOE. Confidence in the correspondence between the TOE
security requirements and the TOE is greater if security analysis and the production of the evidence
are done on a regular basis as an integral part of the development, production, delivery and
maintenance activities.

During the life-cycle of the TOE it is distinguished whether the TOE is under the responsibility of the
TOE developer or the user rather than whether it is located in the development or the user
environment. The point of transition is when the TOE is accepted by the user. User in this context
relates to the end-user as well as product- and system integrators.

The ALC class consists of nine families:

— Development Life-cycle definition (ALC_LCD) provides requirements for the developer’s
description of the life-cycle model used in the development, production, delivery and maintenance
life-cycle of the TOE;

— CM capabilities (ALC_CMC) provides requirements for the management of the configuration items;

— (M scope (ALC_CMS) requires a minimum set of configuration items to be managed in the defined
way;

— Developer environment security (ALC_DVS) is concerned with the developer's physical, logical,
procedural, personnel, and other security controls;

— Tools and techniques (ALC_TAT) provides requirements for the development tools and
implementation standards used by the developer;

— Flaw remediation (ALC_FLR) provides requirements for the handling of security flaws.

— Delivery (ALC_DEL) provides requirements for the procedures used for the delivery of the TOE to
the downstream user. Delivery processes occurring during the development of the TOE are

© ISO/IEC 2020 - All rights reserved 83



ISO/IEC DIS 15408-3:2020(E)

denoted rather as transfers, and are handled in the context of integration and acceptance
procedures in other families of this class.

— ALC_TDA is concerned with the generation of certain artefacts during the development process.

— ALC_COMP is concerned with the integration of composition parts and a consistency check of
delivery procedures.

Throughout this class, development and related terms (developer, develop) are meant in the more
general sense to comprise development and production, whereas production specifically means the
process of transforming the implementation representation into the final TOE.

Figure 10 shows the families within this class, and the hierarchy of components within the families.

AGD_OPE: Operational user guide 1

AGD PRE: Preparative procedures 1

Figure 10 — ALC: Life-cycle support class decomposition

12.2 CM capabilities (ALC_CMC)
12.2.1 Objectives

Configuration management (CM) techniques, properly defined as part of the development life-cycle
model, contribute to the assurance argument that the TOE meets the SFRs. A Configuration
Management (CM) system that is managed and operated correctly will help ensure the integrity of the
portions of the TOE that are controlled, by providing a method of tracking any changes to the TOE, and
to help ensure that all changes to the TOE are authorized.

The objective of this family is to require the TOE developer's CM system to have certain capabilities.
These capabilities are intendted to reduce the likelihood that accidental or unauthorised modifications
of the configuration items will occur. The CM system should support maintaining the integrity of the
TOE throughout the part of the TOE’s life-cycle that is under the control of the developer.

The objective of introducing automated CM tools is to increase the effectiveness of the CM system.
While both automated and manual CM systems can be bypassed, ignored, or proven insufficient to
prevent unauthorised modification, automated systems are less susceptible to human error or
negligence.

The objectives of this family include the following:

a) ensuring that the TOE is identifiable and complete before it is sent to the downstream user;
b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE configuration items.
12.2.2 Component levelling

The components in this family are levelled on the basis of the CM system capabilities, the scope of the
CM documentation and the evidence provided by the developer.

© ISO/IEC 2020 - All rights reserved 84



ISO/IEC DIS 15408-3:2020(E)

12.2.3 Application notes

In the case where the TOE is a subset of a product, the requirements of this family apply only to the
TOE configuration items, not to the product as a whole.

For developer organizations that specify more than one CM application, or include different instances
of a CM application within the scope of the TOEs design, development, production and maintenance, it
is required to document all of them. For evaluation purposes, the set of CM applications should be
regarded as parts of an overall CM system, applicable to the TOE, which is addressed in the criteria.

The overall CM system should address any aspects of integration between component CM applications.

Several elements of this family refer to configuration items. These elements identify CM requirements
to be imposed on all items identified in the configuration list, but leave the contents of the list to the
discretion of the developer. CM scope (ALC_CMS) can be used to narrow this discretion by identifying
specific items that must be included in the configuration list, and hence within the scope of the overall
CM system.

ALC_CMC.2.3C introduces a requirement that the CM system uniquely identify all configuration items.
This also requires that modifications to configuration items result in a new, unique identifier being
assigned to the configuration item.

ALC_CMC.3.8C introduces the requirement that the evidence shall demonstrate that the CM system
operates in accordance with the CM plan. Examples of such evidence might be documentation such as
screen snapshots or audit trail output from the CM system, or a detailed demonstration of the CM
system by the developer. The evaluator is responsible for determining that this evidence is sufficient
to show that the CM system operates in accordance with the CM plan.

ALC_CMC.4.5C introduces a requirement that the CM system provide an automated means to support
the production of the TOE. This requires that the CM system provide an automated means to assist in
determining that the correct configuration items are used in generating the TOE.

ALC_CMC.5.10C introduces a requirement that the CM system provide an automated means to
ascertain the changes between the TOE and its preceding version. If no previous version of the TOE
exists, the developer still needs to provide an automated means to ascertain the changes between the
TOE and a future version of the TOE.

12.2.4 ALC_CMC.1 Labelling of the TOE

Dependencies: ALC_CMS.1 TOE CM coverage
Objectives

A unique reference is required to ensure that there is no ambiguity in terms of which instance of the
TOE is being evaluated. Labelling the TOE with its reference ensures that users of the TOE can be
aware of which instance of the TOE they are using.

Developer action elements

ALC_CMC.1.1D

The developer shall provide the TOE and a unique reference for the TOE.
Content and presentation elements

ALC_CMC.1.1C

The TOE shall be labelled with its unique reference.

Evaluator action elements

ALC_CMC.1.1E

© ISO/IEC 2020 - All rights reserved 85



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

12.2.5 ALC_CMC.2 Use of the CM system

Dependencies: ALC_CMS.1 TOE CM coverage
Objectives

A unique reference is required to ensure that there is no ambiguity in terms of which instance of the
TOE is being evaluated. Labelling the TOE with its reference ensures that users of the TOE can be
aware of which instance of the TOE they are using.

Unique identification of the configuration items leads to a clearer understanding of the composition of
the TOE, which in turn helps to determine those items which are subject to the evaluation
requirements for the TOE.

The use of a CM system increases assurance that the configuration items are maintained in a
controlled manner.

Developer action elements

ALC_CMC.2.1D

The developer shall provide the TOE and a unique reference for the TOE.
ALC_CMC.2.2D

The developer shall provide the CM documentation.
ALC_CMC.2.3D

The developer shall use a CM system.

Content and presentation elements

ALC_CMC.2.1C

The TOE shall be labelled with its unique reference.
ALC_CMC.2.2C

The CM documentation shall describe the method used to uniquely identify the configuration
items.

ALC_CMC.2.3C

The CM system shall uniquely identify all configuration items.
Evaluator action elements

ALC_CMC.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.2.6 ALC_CMC.3 Authorization controls

Dependencies: ALC_CMS.1 TOE CM coverage
ALC_DVS.1 Identification of security measures

ALC_LCD.1 Developer defined life-cycle processes

A life-cycle model encompasses the procedures, tools and techniques used to develop and maintain the
TOE. Aspects of the process that may be covered by such a model include design methods, review
procedures, project management controls, change control procedures, test methods and acceptance

© ISO/IEC 2020 - All rights reserved 86



ISO/IEC DIS 15408-3:2020(E)

procedures. An effective life-cycle model will address these aspects of the development and
maintenance process within an overall management structure that assigns responsibilities and
monitors progress.

There are different types of acceptance situations that are dealt with at different locations in the
criteria:

— acceptance of parts delivered by subcontractors (“integration”) should be treated in this family
— Development Life-cycle definition (ALC_LCD),

— acceptance subsequent to internal transportations in Developer environment security (ALC_DVS),
— acceptance of parts into the CM system in CM capabilities (ALC_CMC), and

— acceptance of the delivered TOE by the consumer in Delivery (ALC_DEL).

The first three types may overlap.

Although life-cycle definition deals with the maintenance of the TOE and hence with aspects becoming
relevant after the completion of the evaluation, its evaluation adds assurance through an analysis of
the life-cycle information for the TOE provided at the time of the evaluation.

A life-cycle model provides for the necessary control over the development and maintenance of the
TOE, if the model enables sufficient minimisation of the danger that the TOE will not meet its security
requirement.

A measurable life-cycle model is a model using some quantitative valuation (arithmetic parameters
and/or metrics) of the managed product in order to measure development properties of the product.
Typical metrics are source code complexity metrics, defect density (errors per size of code) or mean
time to failure. For the security evaluation all those metrics are of relevance, which are used to
increase quality by decreasing the probability of faults and thereby in turn increasing assurance in the
security of the TOE.

One should take into account that there exist standardised life-cycle models on the one hand (like the
waterfall model) and standardised metrics on the other hand (like error density), which may be
combined. The ISO/IEC 15408 series does not require the life-cycle to follow exactly one standard
defining both aspects.

ALC_LCD.1 Developer defined life-cycle processes
Objectives

A unique reference is required to ensure that there is no ambiguity in terms of which instance of the
TOE is being evaluated. Labelling the TOE with its reference ensures that users of the TOE can be
aware of which instance of the TOE they are using.

Unique identification of the configuration items leads to a clearer understanding of the composition of
the TOE, which in turn helps to determine those items which are subject to the evaluation
requirements for the TOE.

The use of a CM system increases assurance that the configuration items are maintained in a
controlled manner.

Providing controls to ensure that unauthorised modifications are not made to the TOE (“CM access
control”), and ensuring proper functionality and use of the CM system, helps to maintain the integrity
of the TOE.

Developer action elements

© ISO/IEC 2020 - All rights reserved 87



ISO/IEC DIS 15408-3:2020(E)

ALC_CMC.3.1D

The developer shall provide the TOE and a unique reference for the TOE.
ALC_CMC.3.2D

The developer shall provide the CM documentation.

ALC_CMC.3.3D

The developer shall use a CM system.

Content and presentation elements

ALC_CMC.3.1C

The TOE shall be labelled with its unique reference.

ALC_CMC.3.2C

The CM documentation shall describe the method used to uniquely identify the configuration items.
ALC_CMC.3.3C

The CM system shall uniquely identify all configuration items.
ALC_CMC.3.4C

The CM system shall provide controls such that only authorized changes are made to the
configuration items.

ALC_CMC.3.5C

The CM documentation shall include a CM plan.

ALC_CMC.3.6C

The CM plan shall describe how the CM system is used for the development of the TOE.
ALC_CMC.3.7C

The evidence shall demonstrate that all configuration items are being maintained under the CM
system.

ALC_CMC.3.8C

The evidence shall demonstrate that the CM system is being operated in accordance with the
CM plan.

Evaluator action elements
ALC_CMC.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.2.7 ALC_CMC.4 Production support, acceptance procedures and automation

Dependencies: ALC_CMS.1 TOE CM coverage
ALC_DVS.1 Identification of security measures

ALC_LCD.1 Developer defined life-cycle processes

A life-cycle model encompasses the procedures, tools and techniques used to develop and maintain the
TOE. Aspects of the process that may be covered by such a model include design methods, review
procedures, project management controls, change control procedures, test methods and acceptance
procedures. An effective life-cycle model will address these aspects of the development and

© ISO/IEC 2020 - All rights reserved 88



ISO/IEC DIS 15408-3:2020(E)

maintenance process within an overall management structure that assigns responsibilities and
monitors progress.

There are different types of acceptance situations that are dealt with at different locations in the
criteria:

— acceptance of parts delivered by subcontractors (“integration”) should be treated in this family
— Development Life-cycle definition (ALC_LCD),

— acceptance subsequent to internal transportations in Developer environment security (ALC_DVS),
— acceptance of parts into the CM system in CM capabilities (ALC_CMC), and

— acceptance of the delivered TOE by the consumer in Delivery (ALC_DEL).

The first three types may overlap.

Although life-cycle definition deals with the maintenance of the TOE and hence with aspects becoming
relevant after the completion of the evaluation, its evaluation adds assurance through an analysis of
the life-cycle information for the TOE provided at the time of the evaluation.

A life-cycle model provides for the necessary control over the development and maintenance of the
TOE, if the model enables sufficient minimisation of the danger that the TOE will not meet its security
requirement.

A measurable life-cycle model is a model using some quantitative valuation (arithmetic parameters
and/or metrics) of the managed product in order to measure development properties of the product.
Typical metrics are source code complexity metrics, defect density (errors per size of code) or mean
time to failure. For the security evaluation all those metrics are of relevance, which are used to
increase quality by decreasing the probability of faults and thereby in turn increasing assurance in the
security of the TOE.

One should take into account that there exist standardised life-cycle models on the one hand (like the
waterfall model) and standardised metrics on the other hand (like error density), which may be
combined. The ISO/IEC 15408 series does not require the life-cycle to follow exactly one standard
defining both aspects.

ALC_LCD.1 Developer defined life-cycle processes
Objectives

A unique reference is required to ensure that there is no ambiguity in terms of which instance of the
TOE is being evaluated. Labelling the TOE with its reference ensures that users of the TOE can be
aware of which instance of the TOE they are using.

Unique identification of the configuration items leads to a clearer understanding of the composition of
the TOE, which in turn helps to determine those items which are subject to the evaluation
requirements for the TOE.

The use of a CM system increases assurance that the configuration items are maintained in a
controlled manner.

Providing access controls to help ensure that unauthorised modifications are not made to the TOE
(“CM access control”), and ensuring proper functionality and use of the CM system, helps to maintain
the integrity of the TOE.

The purpose of the acceptance procedures is to ensure that the parts of the TOE are of adequate
quality and to confirm that any creation or modification of configuration items is authorized.

© ISO/IEC 2020 - All rights reserved 89



ISO/IEC DIS 15408-3:2020(E)

Acceptance procedures are an essential element in integration processes and in the life-cycle
management of the TOE.

In a CM system where the quantity and organization of configuration items is compley, it is difficult to
control changes without the support of automated tools. In particular, these automated tools need to
be able to support the numerous changes that occur during development and ensure that those
changes are authorized. It is an objective of this component to ensure that the configuration items are
controlled through automated means. In the case where the overall CM system includes more than one
CM application then automated tools can also support integration between the CM applications and of
the TOE.

Production support procedures help to ensure that the generation of the TOE from a managed set of
configuration items is correctly performed in an authorized manner, particularly in the case when
different developers are involved and integration processes have to be carried out.

Developer action elements

ALC_CMC.4.1D

The developer shall provide the TOE and a unique reference for the TOE.
ALC_CMC.4.2D

The developer shall provide the CM documentation.
ALC_CMC.4.3D

The developer shall use a CM system.

Content and presentation elements
ALC_CMC.4.1C

The TOE shall be labelled with its unique reference.
ALC_CMC.4.2C

The CM documentation shall describe the method or methods used to uniquely identify the
configuration items.

ALC_CMC.4.3C
The CM system shall uniquely identify all configuration items.
ALC_CMC.4.4C

The CM system shall provide automated controls such that only authorized changes are made to the
configuration items.

ALC_CMC.4.5C

The CM system shall support the production of the TOE by automated means.
ALC_CMC.4.6C

The CM documentation shall include a CM plan.

ALC_CMC.4.7C

The CM plan shall describe how the CM system is used for the development of the TOE.
ALC_CMC.4.8C

The CM plan shall describe the procedures used to accept modified or newly created
configuration items as part of the TOE.

ALC_CMC.4.9C

© ISO/IEC 2020 - All rights reserved 90



ISO/IEC DIS 15408-3:2020(E)

The evidence shall demonstrate that all configuration items are being maintained under the CM
system.

ALC_CMC.4.10C

The evidence shall demonstrate that the CM system is being operated in accordance with the CM plan.
Evaluator action elements

ALC_CMC.4.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.2.8 ALC_CMC.5 Advanced support

Dependencies: ALC_CMS.1 TOE CM coverage
ALC_DVS.2 Sufficiency of security measures

ALC_LCD.1 Developer defined life-cycle processes

A life-cycle model encompasses the procedures, tools and techniques used to develop and maintain the
TOE. Aspects of the process that may be covered by such a model include design methods, review
procedures, project management controls, change control procedures, test methods and acceptance
procedures. An effective life-cycle model will address these aspects of the development and
maintenance process within an overall management structure that assigns responsibilities and
monitors progress.

There are different types of acceptance situations that are dealt with at different locations in the
criteria:

— acceptance of parts delivered by subcontractors (“integration”) should be treated in this family
— Development Life-cycle definition (ALC_LCD),

— acceptance subsequent to internal transportations in Developer environment security (ALC_DVS),
— acceptance of parts into the CM system in CM capabilities (ALC_CMC), and

— acceptance of the delivered TOE by the consumer in Delivery (ALC_DEL).

The first three types may overlap.

Although life-cycle definition deals with the maintenance of the TOE and hence with aspects becoming
relevant after the completion of the evaluation, its evaluation adds assurance through an analysis of
the life-cycle information for the TOE provided at the time of the evaluation.

A life-cycle model provides for the necessary control over the development and maintenance of the
TOE, if the model enables sufficient minimisation of the danger that the TOE will not meet its security
requirement.

A measurable life-cycle model is a model using some quantitative valuation (arithmetic parameters
and/or metrics) of the managed product in order to measure development properties of the product.
Typical metrics are source code complexity metrics, defect density (errors per size of code) or mean
time to failure. For the security evaluation all those metrics are of relevance, which are used to
increase quality by decreasing the probability of faults and thereby in turn increasing assurance in the
security of the TOE.

One should take into account that there exist standardised life-cycle models on the one hand (like the
waterfall model) and standardised metrics on the other hand (like error density), which may be

© ISO/IEC 2020 - All rights reserved 91



ISO/IEC DIS 15408-3:2020(E)

combined. The ISO/IEC 15408 series does not require the life-cycle to follow exactly one standard
defining both aspects.

ALC_LCD.1 Developer defined life-cycle processes
Objectives

A unique reference is required to ensure that there is no ambiguity in terms of which instance of the
TOE is being evaluated. Labelling the TOE with its reference ensures that users of the TOE can be
aware of which instance of the TOE they are using.

Unique identification of the configuration items leads to a clearer understanding of the composition of
the TOE, which in turn helps to determine those items which are subject to the evaluation
requirements for the TOE.

The use of a CM system increases assurance that the configuration items are maintained in a
controlled manner.

Providing controls to ensure that unauthorised modifications are not made to the TOE (“CM access
control”), and ensuring proper functionality and use of the CM system, helps to maintain the integrity
of the TOE.

The purpose of the acceptance procedures is to ensure that the parts of the TOE meet defined criteria
in regard to the integrity of the TOE. Criteria for acceptance procedures may include code review,
checking for vulnerabilities, authenticity checking, and functional testing to confirm that any creation
or modification of configuration items is authorized. Acceptance procedures are an essential element
in integration processes and in the life-cycle management of the TOE.

In development environments where the configuration items are compley, it is difficult to control
changes without the support of automated tools. In particular, these automated tools need to be able
to support the numerous changes that occur during development and ensure that those changes are
authorized. It is an objective of this component to ensure that the configuration items are controlled
through automated means. If the TOE is developed by multiple developers, i.e. integration has to take
place, the use of automatic tools is adequate.

Production support procedures help to ensure that the generation of the TOE from a managed set of
configuration items is correctly performed in an authorized manner, particularly in the case when
different developers are involved and integration processes have to be carried out.

Requiring that the CM system be able to identify the version of the implementation representation
from which the TOE is generated helps to ensure that the integrity of this material is preserved by the
appropriate technical, physical and procedural safeguards.

Providing an automated means of ascertaining changes between versions of the TOE and identifying
which configuration items are affected by modifications to other configuration items assists in
determining the impact of the changes between successive versions of the TOE. This in turn can
provide valuable information in determining whether changes to the TOE result in all configuration
items being consistent with one another.

Developer action elements

ALC_CMC.5.1D

The developer shall provide the TOE and a unique reference for the TOE.
ALC_CMC.5.2D

The developer shall provide the CM documentation.

ALC_CMC.5.3D

The developer shall use a CM system.

© ISO/IEC 2020 - All rights reserved 92



ISO/IEC DIS 15408-3:2020(E)

Content and presentation elements

ALC_CMC.5.1C

The TOE shall be labelled with its unique reference.

ALC_CMC.5.2C

The CM documentation shall describe the method used to uniquely identify the configuration items.
ALC_CMC.5.3C

The CM documentation shall justify that the acceptance procedures provide for an adequate
and appropriate review of changes to all configuration items.

ALC_CMC.5.4C
The CM system shall uniquely identify all configuration items.
ALC_CMC.5.5C

The CM system shall provide automated controls such that only authorized changes are made to the
configuration items.

ALC_CMC.5.6C
The CM system shall support the production of the TOE by automated means.
ALC_CMC.5.7C

The CM system shall ensure that the person responsible for accepting a configuration item into
CM is not the person who developed it.

ALC_CMC.5.8C
The CM system shall identify the configuration items that comprise the TSF.
ALC_CMC.5.9C

The CM system shall support the audit of all changes to the TOE by automated means, including
the originator, date, and time in the audit trail.

ALC_CMC.5.10C

The CM system shall provide an automated means to identify all other configuration items that
are affected by the change of a given configuration item.

ALC_CMC.5.11C

The CM system shall be able to identify the version of the implementation representation from
which the TOE is generated.

ALC_CMC.5.12C

The CM documentation shall include a CM plan.

ALC_CMC.5.13C

The CM plan shall describe how the CM system is used for the development of the TOE.
ALC_CMC.5.14C

The CM plan shall describe the procedures used to accept modified or newly created configuration
items as part of the TOE.

ALC_CMC.5.15C

The evidence shall demonstrate that all configuration items are being maintained under the CM
system.

© ISO/IEC 2020 - All rights reserved 93



ISO/IEC DIS 15408-3:2020(E)

ALC_CMC.5.16C

The evidence shall demonstrate that the CM system is being operated in accordance with the CM plan.
Evaluator action elements

ALC_CMC.5.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ALC_CMC.5.2E

The evaluator shall determine that the application of the production support procedures
results in a TOE as provided by the developer for testing activities.

12.3 CM scope (ALC_CMS)

12.3.1 Objectives

The objective of this family is to identify items to be included as configuration items and hence placed
under the CM requirements of CM capabilities (ALC_CMC). Applying configuration management to
these additional items provides additional assurance that the integrity of TOE is maintained.

12.3.2 Component levelling

The components in this family are levelled on the basis of which of the following are required to be
included as configuration items: the TOE and the evaluation evidence required by the SARs; the parts
of the TOE; the implementation representation; security flaws; and development tools and related
information.

12.3.3 Application notes
While CM scope (ALC_CMS) mandates a list of configuration items and that each item on this list be
under CM, CM capabilities (ALC_CMC) leaves the contents of the configuration list to the discretion of

the developer. CM scope (ALC_CMS) narrows this discretion by identifying items that must be included
in the configuration list, and hence come under the CM requirements of CM capabilities (ALC_CMC).

12.3.4 ALC_CMS.1 TOE CM coverage

Dependencies: No dependencies.
Objectives

A CM system can control changes only to those items that have been placed under CM (i.e. the
configuration items identified in the configuration list). Placing the TOE itself and the evaluation
evidence required by the other SARs in the ST under CM provides assurance that they have been
modified in a controlled manner with proper authorisations.

Application notes

ALC_CMS.1.1C introduces the requirement that the TOE itself and the evaluation evidence required by
the other SARs in the ST be included in the configuration list and hence be subject to the CM
requirements of CM capabilities (ALC_CMC).

Developer action elements

ALC_CMS.1.1D

The developer shall provide a configuration list for the TOE.
Content and presentation elements

ALC_CMS.1.1C

© ISO/IEC 2020 - All rights reserved 94



ISO/IEC DIS 15408-3:2020(E)

The configuration list shall include the following: the TOE itself; and the evaluation evidence
required by the SARs.

ALC_CMS.1.2C

The configuration list shall uniquely identify the configuration items.
Evaluator action elements

ALC_CMS.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

12.3.5 ALC_CMS.2 Parts of the TOE CM coverage

Dependencies: No dependencies.
Objectives

A CM system can control changes only to those items that have been placed under CM (i.e. the
configuration items identified in the configuration list). Placing the TOE itself, the parts that comprise
the TOE, and the evaluation evidence required by the other SARs under CM provides assurance that
they have been modified in a controlled manner with proper authorisations.

Application notes

ALC_CMS.2.1C introduces the requirement that the parts that comprise the TOE (all parts that are
delivered to the consumer, for example hardware parts or executable files) be included in the
configuration list and hence be subject to the CM requirements of CM capabilities (ALC_CMC).

ALC_CMS.2.3C introduces the requirement that the configuration list indicate the developer of each
TSF relevant configuration item.

Developer action elements

ALC_CMS.2.1D

The developer shall provide a configuration list for the TOE.
Content and presentation elements

ALC_CMS.2.1C

The configuration list shall include the following: the TOE itself; the evaluation evidence required by
the SARs; and the parts that comprise the TOE.

ALC_CMS.2.2C
The configuration list shall uniquely identify the configuration items.
ALC_CMS.2.3C

For each TSF relevant configuration item, the configuration list shall indicate the developer of
the item.

Evaluator action elements
ALC_CMS.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.3.6 ALC_CMS.3 Implementation representation CM coverage

Dependencies: No dependencies.

© ISO/IEC 2020 - All rights reserved 95



ISO/IEC DIS 15408-3:2020(E)

Objectives

A CM system can control changes only to those items that have been placed under CM (i.e. the
configuration items identified in the configuration list). Placing the TOE itself, the parts that comprise
the TOE, the TOE implementation representation and the evaluation evidence required by the other
SARs under CM provides assurance that they have been modified in a controlled manner with proper
authorisations.

Application notes

ALC_CMS.3.1C introduces the requirement that the TOE implementation representation be included in
the list of configuration items and hence be subject to the CM requirements of CM capabilities
(ALC_CMQ).

Developer action elements

ALC_CMS.3.1D

The developer shall provide a configuration list for the TOE.
Content and presentation elements

ALC_CMS.3.1C

The configuration list shall include the following: the TOE itself; the evaluation evidence required by
the SARs; the parts that comprise the TOE; and the implementation representation.

ALC_CMS.3.2C

The configuration list shall uniquely identify the configuration items.

ALC_CMS.3.3C

For each TSF relevant configuration item, the configuration list shall indicate the developer of the item.
Evaluator action elements

ALC_CMS.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.3.7 ALC_CMS.4 Problem tracking CM coverage

Dependencies: No dependencies.
Objectives

A CM system can control changes only to those items that have been placed under CM (i.e. the
configuration items identified in the configuration list). Placing the TOE itself, the parts that comprise
the TOE, the TOE implementation representation and the evaluation evidence required by the other
SARs under CM provides assurance that they have been modified in a controlled manner with proper
authorisations.

Placing security flaw reports under CM ensures that the integrity of the reports is maintained and that
access to them is managed, further, it may support developers in tracking security flaws to their
resolution.

Application notes

ALC_CMS.4.1C introduces the requirement that reports of identified security flaws be included in the
configuration list and hence be subject to the CM requirements of CM capabilities (ALC_CMC). This
requires that information regarding previously identified security flaw reports and their resolution be
maintained.

© ISO/IEC 2020 - All rights reserved 96



ISO/IEC DIS 15408-3:2020(E)

Developer action elements

ALC_CMS.4.1D

The developer shall provide a configuration list for the TOE.
Content and presentation elements

ALC_CMS.4.1C

The configuration list shall include the following: the TOE itself; the evaluation evidence required by
the SARs; the parts that comprise the TOE; the implementation representation; and security flaw
reports and resolution status.

ALC_CMS.4.2C

The configuration list shall uniquely identify the configuration items.

ALC_CMS.4.3C

For each TSF relevant configuration item, the configuration list shall indicate the developer of the item.
Evaluator action elements

ALC_CMS.4.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.3.8 ALC_CMS.5 Development tools CM coverage

Dependencies: No dependencies.
Objectives

A CM system can control changes only to those items that have been placed under CM (i.e. the
configuration items identified in the configuration list). Placing the TOE itself, the parts that comprise
the TOE, the TOE implementation representation and the evaluation evidence required by the other
SARs under CM provides assurance that they have been modified in a controlled manner with proper
authorisations.

Placing security flaw reports under CM ensures that the integrity of the reports is maintained and that
access to them is managed, further, it may support developers in tracking security flaws to their
resolution.

Development tools play an important role in ensuring the production of a quality version of the TOE.
Therefore, it is important to control modifications to these tools.

Application notes

ALC_CMS.5.1C introduces the requirement that development tools and other related information be
included in the list of configuration items and hence be subject to the CM requirements of CM
capabilities (ALC_CMC). Examples of development tools are programming languages and compilers.
Information pertaining to TOE generation items (such as compiler options, generation options, and
build options) is an example of information relating to development tools.

Developer action elements

ALC_CMS.5.1D

The developer shall provide a configuration list for the TOE.
Content and presentation elements

ALC_CMS.5.1C

© ISO/IEC 2020 - All rights reserved 97



ISO/IEC DIS 15408-3:2020(E)

The configuration list shall include the following: the TOE itself; the evaluation evidence required by
the SARs; the parts that comprise the TOE; the implementation representation; security flaw reports
and resolution status; and development tools and related information.

ALC_CMS.5.2C

The configuration list shall uniquely identify the configuration items.

ALC_CMS.5.3C

For each TSF relevant configuration item, the configuration list shall indicate the developer of the item.
Evaluator action elements

ALC_CMS.5.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.4 Delivery (ALC_DEL)

12.4.1 Objectives
The concern of this family is the secure transfer of the finished TOE from the development
environment into the responsibility of the user.

The requirements for delivery call for system control and distribution facilities and procedures that
detail the controls necessary to provide assurance that the security of the TOE is maintained during
distribution of the TOE to the user. For a valid distribution of the TOE, the procedures used for the
distribution of the TOE address the implied or identified objectives identified in the PP/ST relating to
the security of the TOE during delivery.

12.4.2 Component levelling

This family contains only one component. An increasing level of protection for the TOE is established
by requiring that the delivery procedures are commensurate with the assumed attack potential in the
family Vulnerability analysis (AVA_VAN) specified in the ST.

12.4.3 Application notes

Transfers from subcontractors to the developer or between different development sites are not
considered here, but in the family Developer environment security (ALC_DVS).

The end of the delivery phase is marked by the acceptance of the transfer of the TOE into the
responsibility of the downstream user.

NOTE: This does not necessarily coincide with the arrival of the TOE at the downstream user's location.

The delivery procedures should consider, if applicable, issues such as:

a) ensuring that the TOE received by the consumer corresponds precisely to the evaluated version of
the TOE;

b) avoiding or detecting any tampering with the actual version of the TOE;
c) preventing submission of a counterfeit version of the TOE;

d) avoiding unwanted knowledge of distribution of the TOE to the consumer: there might be cases
where potential attackers should not know when and how it is delivered;

e) avoiding or detecting the TOE being intercepted during delivery; and

© ISO/IEC 2020 - All rights reserved 98



ISO/IEC DIS 15408-3:2020(E)

f) avoiding the TOE being delayed or stopped during distribution.

The delivery procedures should include the recipient's actions implied by these issues. The consistent
description of these implied actions is examined in the Preparative procedures (AGD_PRE) family, if
present.

12.4.4 ALC_DEL.1 Delivery procedures

Dependencies: No dependencies.
Developer action elements
ALC_DEL.1.1D

The developer shall document and provide procedures for delivery of the TOE or parts of it to
the consumer.

ALC_DEL.1.2D

The developer shall use the delivery procedures.
Content and presentation elements
ALC_DEL.1.1C

The delivery documentation shall describe all procedures that are necessary to maintain
security when distributing versions of the TOE to the consumer.

Evaluator action elements
ALC_DEL.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

12.5 Developer environment security (ALC_DVS)

12.5.1 Objectives

Development security is concerned with the determination and specification of security controls
relating to the developer provided environment.

NOTE: Such controls include coverage of security relevant aspects of asset management, human resources
security, physical and environmental security, communications and operations management, access control,
information systems acquisition, development and maintenance, information security incident management, and
business continuity management.

12.5.2 Component levelling

The components in this family are levelled on the basis of whether justification of the sufficiency of the
security controls is required.

12.5.3 Application notes
This family deals with controls to remove or reduce threads and security risks existing at the
developer's site.

The evaluator should visit the site(s) in order to assess evidence for development security. This may
include sites of subcontractors involved in the TOE development and production. Any decision not to
visit shall be agreed with the evaluation authority.

Although development security deals with the maintenance of the TOE and hence with aspects
becoming relevant after the completion of the evaluation, the Developer environment security

© ISO/IEC 2020 - All rights reserved 99



ISO/IEC DIS 15408-3:2020(E)

(ALC_DVS) requirements specify only that the development security controls be in place at the time of
evaluation. Furthermore, Developer environment security (ALC_DVS) does not contain any
requirements related to the sponsor's intention to apply the development security controls in the
future, after completion of the evaluation.

It is recognized that confidentiality may not always be an issue for the protection of the TOE in its
development environment. The use of the word “necessary” allows for the selection of appropriate
safeguards.

12.5.4 ALC_DVS.1 Identification of security controls

Dependencies: No dependencies.

Developer action elements

ALC_DVS.1.1D

The developer shall produce and provide development security documentation.
Content and presentation elements

ALC_DVS.1.1C

The development security documentation shall describe all the physical, logical, procedural,
personnel, and other security controls that are necessary to protect the confidentiality and
integrity of the TOE design and implementation in its development environment.

Evaluator action elements
ALC_DVS.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ALC_DVS.1.2E

The evaluator shall confirm that the security controls are being applied.
12.5.5 ALC_DVS.2 Sufficiency of security controls

Dependencies: No dependencies.

Developer action elements

ALC_DVS.2.1D

The developer shall produce and provide development security documentation.
Content and presentation elements

ALC_DVS.2.1C

The development security documentation shall describe all the physical, procedural, personnel, and
other security controls that are necessary to protect the confidentiality and integrity of the TOE design
and implementation in its development environment.

ALC_DVS.2.2C

The development security documentation shall justify that the security controls provide the
necessary level of protection to maintain the confidentiality and integrity of the TOE.

Evaluator action elements

ALC_DVS.2.1E

© ISO/IEC 2020 - All rights reserved 100



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ALC_DVS.2.2E
The evaluator shall confirm that the security controls are being applied.
12.6 Flaw remediation (ALC_FLR)

12.6.1 Objectives

Flaw remediation requires that discovered security flaws be tracked and corrected by the developer.
Although future compliance with flaw remediation procedures cannot be determined at the time of the
TOE evaluation, it is possible to evaluate the policies and procedures that a developer has in place to
track and correct flaws, and to distribute the flaw information and corrections.

12.6.2 Component levelling

The components in this family are levelled on the basis of the increasing extent in scope of the flaw
remediation procedures and the rigour of the flaw remediation policies.

12.6.3 Application notes

This family provides assurance that the TOE will be maintained and supported in the future, requiring
the TOE developer to track and correct flaws in the TOE. Additionally, requirements are included for
the distribution of flaw corrections. However, this family does not impose evaluation requirements
beyond the current evaluation.

The TOE user is considered to be the focal point in the user organization that is responsible for
receiving and implementing fixes to security flaws. This is not necessarily an individual user, but may
be an organisational representative who is responsible for the handling of security flaws. The use of
the term TOE user recognizes that different organisations have different procedures for handling flaw
reporting, which may be done either by an individual user, or by a central administrative body.

The flaw remediation procedures should describe the methods for dealing with all types of flaws
encountered. These flaws may be reported by the developer, by users of the TOE, or by other parties
with familiarity with the TOE. Some flaws may not be reparable immediately. There may be some
occasions where a flaw cannot be fixed and other (e.g. procedural) controls must be taken. The
documentation provided should cover the procedures for providing the operational sites with fixes,
and providing information on flaws where fixes are delayed (and what to do in the interim) or when
fixes are not possible.

Changes applied to a TOE after its release render it unevaluated; although some information from the
original evaluation may still apply. The phrase “release of the TOE” used in this family therefore refers
to a version of a product that is a release of a certified TOE, to which changes have been applied.

12.6.4 ALC_FLR.1 Basic flaw remediation

Dependencies: No dependencies.
Developer action elements
ALC_FLR.1.1D

The developer shall document and provide flaw remediation procedures addressed to TOE
developers.

Content and presentation elements

ALC_FLR.1.1C

© ISO/IEC 2020 - All rights reserved 101



ISO/IEC DIS 15408-3:2020(E)

The flaw remediation procedures documentation shall describe the procedures used to track
all reported security flaws in each release of the TOE.

ALC_FLR.1.2C

The flaw remediation procedures shall require that a description of the nature and effect of
each security flaw be provided, as well as the status of finding a correction to that flaw.

ALC_FLR.1.3C

The flaw remediation procedures shall require that corrective actions be identified for each of
the security flaws.

ALC_FLR.1.4C

The flaw remediation procedures documentation shall describe the methods used to provide
flaw information, corrections and guidance on corrective actions to TOE users.

Evaluator action elements
ALC_FLR.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

12.6.5 ALC_FLR.2 Flaw reporting procedures

Dependencies: No dependencies.
Objectives

In order for the developer to be able to act appropriately upon security flaw reports from TOE users,
and to know to whom to send corrective fixes, TOE users need to understand how to submit security
flaw reports to the developer. Flaw remediation guidance from the developer to the TOE user ensures
that TOE users are aware of this important information.

Developer action elements

ALC_FLR.2.1D

The developer shall document and provide flaw remediation procedures addressed to TOE developers.
ALC_FLR.2.2D

The developer shall establish a procedure for accepting and acting upon all reports of security
flaws and requests for corrections to those flaws.

ALC_FLR.2.3D

The developer shall provide flaw remediation guidance addressed to TOE users.
Content and presentation elements

ALC_FLR.2.1C

The flaw remediation procedures documentation shall describe the procedures used to track all
reported security flaws in each release of the TOE.

ALC_FLR.2.2C

The flaw remediation procedures shall require that a description of the nature and effect of each
security flaw be provided, as well as the status of finding a correction to that flaw.

ALC_FLR.2.3C

The flaw remediation procedures shall require that corrective actions be identified for each of the
security flaws.

© ISO/IEC 2020 - All rights reserved 102



ISO/IEC DIS 15408-3:2020(E)

ALC_FLR.2.4C

The flaw remediation procedures documentation shall describe the methods used to provide flaw
information, corrections and guidance on corrective actions to TOE users.

ALC_FLR.2.5C

The flaw remediation procedures shall describe a means by which the developer receives from
TOE users reports and enquiries of suspected security flaws in the TOE.

ALC_FLR.2.6C

The procedures for processing reported security flaws shall ensure that any reported flaws are
remediated and the remediation procedures issued to TOE users.

ALC_FLR.2.7C

The procedures for processing reported security flaws shall provide safeguards that any
corrections to these security flaws do not introduce any new flaws.

ALC_FLR.2.8C

The flaw remediation guidance shall describe a means by which TOE users report to the
developer any suspected security flaws in the TOE.

Evaluator action elements
ALC_FLR.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.6.6 ALC_FLR.3 Systematic flaw remediation

Dependencies: No dependencies.
Objectives

In order for the developer to be able to act appropriately upon security flaw reports from TOE users,
and to know to whom to send corrective fixes, TOE users need to understand how to submit security
flaw reports to the developer, and how to register themselves with the developer so that they may
receive these corrective fixes. Flaw remediation guidance from the developer to the TOE user ensures
that TOE users are aware of this important information.

Developer action elements

ALC_FLR.3.1D

The developer shall document and provide flaw remediation procedures addressed to TOE developers.
ALC_FLR.3.2D

The developer shall establish a procedure for accepting and acting upon all reports of security flaws
and requests for corrections to those flaws.

ALC_FLR.3.3D

The developer shall provide flaw remediation guidance addressed to TOE users.
Content and presentation elements

ALC_FLR.3.1C

The flaw remediation procedures documentation shall describe the procedures used to track all
reported security flaws in each release of the TOE.

ALC_FLR.3.2C

© ISO/IEC 2020 - All rights reserved 103



ISO/IEC DIS 15408-3:2020(E)

The flaw remediation procedures shall require that a description of the nature and effect of each
security flaw be provided, as well as the status of finding a correction to that flaw.

ALC_FLR.3.3C

The flaw remediation procedures shall require that corrective actions be identified for each of the
security flaws.

ALC_FLR.3.4C

The flaw remediation procedures documentation shall describe the methods used to provide flaw
information, corrections and guidance on corrective actions to TOE users.

ALC_FLR.3.5C

The flaw remediation procedures shall describe a means by which the developer receives from TOE
users reports and enquiries of suspected security flaws in the TOE.

ALC_FLR.3.6C

The flaw remediation procedures shall include a procedure requiring timely response and the
automatic distribution of security flaw reports and the associated corrections to registered
users who might be affected by the security flaw.

ALC_FLR.3.7C

The procedures for processing reported security flaws shall ensure that any reported flaws are
remediated and the remediation procedures issued to TOE users.

ALC_FLR.3.8C

The procedures for processing reported security flaws shall provide safeguards that any corrections to
these security flaws do not introduce any new flaws.

ALC_FLR.3.9C

The flaw remediation guidance shall describe a means by which TOE users report to the developer any
suspected security flaws in the TOE.

ALC_FLR.3.10C

The flaw remediation guidance shall describe a means by which TOE users may register with
the developer, to be eligible to receive security flaw reports and corrections.

ALC_FLR.3.11C

The flaw remediation guidance shall identify the specific points of contact for all reports and
enquiries about security issues involving the TOE.

Evaluator action elements
ALC_FLR.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

12.7 Development Life-cycle definition (ALC_LCD)
12.7.1 Objectives

Poorly defined or uncontrolled processes applied during the development, production and
maintenance of the TOE can result in a TOE that does not meet all of its security objectives. Therefore,
it is important that well defined and controlled processes be established as early as possible in the
TOE's life-cycle.

© ISO/IEC 2020 - All rights reserved 104



ISO/IEC DIS 15408-3:2020(E)

Defining and implementing such processes does not guarantee that the TOE meets all of its SFRs. It is
possible that the processes will be insufficient or inadequate.

Adopting a life-cycle model, or models that meets the needs of the developer’s organization will
improve the likelihood that the development, production and maintenance processes applied to TOE
support the correct design and implementation of a TOE that meets the specified SFRs.

The determination of appropriate process controls in order to support process improvement is a long
established best practice.

12.7.2 Component levelling

The components in this family are levelled on the basis of increasing requirements for measurability of
the life-cycle model, and for compliance with that model.

12.7.3 Application notes

A life-cycle model encompasses the procedures, tools and techniques used to develop and maintain the
TOE. Aspects of the process that may be covered by such a model include design methods, review
procedures, project management controls, change control procedures, test methods and acceptance
procedures. An effective life-cycle model will address these aspects of the development and
maintenance process within an overall management structure that assigns responsibilities and
monitors progress.

There are different types of acceptance situations that are dealt with at different locations in the
criteria:

— acceptance of parts delivered by subcontractors (“integration”) should be treated in this family
— Life-cycle definition (ALC_LCD),

— acceptance subsequent to internal transportations in Development security (ALC_DVS),

— acceptance of parts into the CM system in CM capabilities (ALC_CMC), and

— acceptance of the delivered TOE by the consumer in Delivery (ALC_DEL).

The first three types may overlap.

Although life-cycle definition deals with the maintenance of the TOE and hence with aspects becoming
relevant after the completion of the evaluation, its evaluation adds assurance through an analysis of
the life-cycle information for the TOE provided at the time of the evaluation.

A life-cycle model provides for the necessary control over the development and maintenance of the
TOE, if the model enables sufficient minimization of the danger that the TOE will not meet its security
requirement.

A measurable life-cycle model is a model using some quantitative valuation (arithmetic parameters
and/or metrics) of the managed product in order to measure development properties of the product.
Typical metrics are source code complexity metrics, defect density (errors per size of code) or mean
time to failure. For the security evaluation all those metrics are of relevance, which are used to
increase quality by decreasing the probability of faults and thereby in turn increasing assurance in the
security of the TOE.

One should take into account that there exist standardised life-cycle models on the one hand (like the
waterfall model) and standardised metrics on the other hand (like error density), which may be
combined. The ISO/IEC 15408 series does not require the life-cycle to follow exactly one standard
defining both aspects.

© ISO/IEC 2020 - All rights reserved 105



ISO/IEC DIS 15408-3:2020(E)

12.7.4 ALC_LCD.1 Developer defined life-cycle processes

Dependencies: No dependencies.
Developer action elements
ALC_LCD.1.1D

The developer shall establish a life-cycle model to be used in the development and
maintenance of the TOE.

ALC_LCD.1.2D

The developer shall provide life-cycle definition documentation.
Content and presentation elements

ALC_LCD.1.1C

The life-cycle definition documentation shall describe the processes used to develop and
maintain the TOE.

ALC_LCD.1.2C

The life-cycle model shall provide for the necessary control over the development and
maintenance of the TOE.

Evaluator action elements
ALC_LCD.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

12.7.5 ALC_LCD.2 Measurable life-cycle model

Dependencies: No dependencies.
Developer action elements
ALC_LCD.2.1D

The developer shall establish a life-cycle model to be used in the development and maintenance of the
TOE that is based on a measurable life-cycle model.

ALC_LCD.2.2D

The developer shall provide life-cycle definition documentation.

ALC_LCD.2.3D

The developer shall measure the TOE development using the measurable life-cycle model..
ALC_LCD.2.4D

The developer shall provide life-cycle output documentation.

Content and presentation elements

ALC_LCD.2.1C

The life-cycle definition documentation shall describe the model used to develop and maintain the TOE
including the details of its arithmetic parameters and/or metrics used to measure the quality of
the TOE and/or its development.

ALC_LCD.2.2C

© ISO/IEC 2020 - All rights reserved 106



ISO/IEC DIS 15408-3:2020(E)

The life-cycle model shall provide for the necessary control over the development and maintenance of
the TOE.

ALC_LCD.2.3C

The life-cycle output documentation shall provide the results of the measurements of the TOE
development using the measurable life-cycle model.

Evaluator action elements
ALC_LCD.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ALC_LCD.2.2E

The evaluator shall confirm that the measurements of the TOE development processes and
security relevant properties of the TOE support improvements in the development processes
and/or the TOE itself.

12.8 TOE Development Artefacts (ALC_TDA)

12.8.1 Objectives

This family aims to add trust to the development process or a development. It focuses on the
generation of certain artefacts in the development process. These artefacts are used at a later point in
time to assess the degree to which the development process is trustable. This trust is realized through
the validation of the generated artefacts for confirming them as sufficient evidence for trustable
development.

This family introduces developer practices within the development process to generate the required
artefacts for realizing trustable development. If a requirement in this family does not explicitly specify
the use of automation to generate the required artefacts, the developer is free to undertake the
corresponding practice manually, or to use some integrated automation in the development process,
or to use a hybrid method of both. It is expected that the degree of trust in the development process is
proportional to the degree of automation adoption to implement the corresponding practice in the
development process.

This family also has a relationship with the ALC_TAT family. As ALC_TAT focuses on the tools and
techniques aspect for developing, analysing, and implementing the TOE, it provides the necessary
context when describing the practices of this family being introduced into the development process.

12.8.2 Component levelling

The components in this family are levelled on the basis of increasing cross-checking for consistency
with relevant evidence from components of other families of other security assurance classes.

12.8.3 Application notes

The requirements in ALC_TDA.1 provide a degree of trust in the developer’s ability to identify the set
of implementation representation which actually has been used during the TOE generation time. This
degree of trust helps to positively answer the question “is that really the source code for this software”
or “is that really the register-transfer level (RTL) design or description for this integrated circuit
hardware”” or “is that really the set of implementation representation for this TOE”, which is
potentially relevant in an evaluation. Such degree of trust is built on

a) the timing of when the set of implementation representation identifiers is recorded or logged,

b) the integrity and authenticity of the record of implementation representation identifiers, and

© ISO/IEC 2020 - All rights reserved 107



ISO/IEC DIS 15408-3:2020(E)

c) the traceability of implementation representation identifiers from the TOE.

In the case where some implementation representation elements are also covered in the configuration
list due to ALC_CMS.3, the requirements in ALC_TDA.2 make sure that these implementation
representation elements actually are identifiable through the use of the implementation
representation identifiers of ALC_TDA.1.

With the accurate recording or logging of the actual implementation representation being used by the
development tools under the scope of ALC_TAT, it provides an additional evidence to convince a third
party that a regeneration of the TOE is functionally equivalent to the original TOE.

The requirements in ALC_TDA.3 provide the developer an opportunity to testify the absence of
functional differences between the two possibly visibly different TOEs which have been independently
generated from the identical set of implementation representation.

12.8.4 ALC_TDA.1 Uniquely identifying implementation representation

Dependencies: No dependencies.
Developer action elements
ALC_TDA.1.1D

The developer shall identify individual elements of the TOE implementation representation to
record the list of unique TOE implementation representation identifiers, as the development
tool generates the TOE.

ALC_TDA.1.2D

The developer shall use the current date and time to timestamp the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time.

ALC_TDA.1.3D

The developer shall maintain the integrity of the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.1.4D

The developer shall ensure the authenticity of the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time, with the maintenance
of the (author) origination information.

ALC_TDA.1.5D

The developer shall be able to trace from the TOE to the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.1.6D
The developer shall produce and provide documentation describing
a) the developer’s creation of the list of unique TOE implementation representation

identifiers as recorded during the TOE generation time;

b) the developer’s timestamp being applied to the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time;

c) the maintenance of the (author) origination information of the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time;

© ISO/IEC 2020 - All rights reserved 108



ISO/IEC DIS 15408-3:2020(E)

d) the maintenance of the integrity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time and its associated timestamp and
(author) origination information;

e) the developer’s mechanism to trace from the TOE to the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

Content and presentation elements
ALC_TDA.1.1C

The list of unique TOE implementation representation identifiers as recorded during the TOE
generation time shall demonstrate the correspondence between the TOE implementation
representation element identifiers and the TOE implementation representation element
names.

ALC_TDA.1.2C

The TOE implementation representation element names shall be in the same form as used or
referenced by the development tool to generate the TOE.

ALC_TDA.1.3C

The timestamp of the list of unique TOE implementation representation identifiers as recorded
during the TOE generation time shall be consistent with the creation time of the TOE.

ALC_TDA.1.4C

The (author) origination information of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time shall be consistent with the (author)
origination information of the TOE. The author origination information may be the name of an
affiliate of an organization.

Evaluator action elements
ALC_TDA.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ALC_TDA.1.2E

The evaluator shall confirm that the development tool for generating the TOE is capable to use
or reference the implementation representation element names.

ALC_TDA.1.3E

The evaluator shall confirm that the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time is consistent with the creation time of
the TOE.

ALC_TDA.1.4E

The evaluator shall confirm that the (author) origination information of the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time is
consistent with the (author) origination information of the TOE.

ALC_TDA.1.5E

The evaluator shall check the integrity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time and its associated timestamp and
(author) origination information.

© ISO/IEC 2020 - All rights reserved 109



ISO/IEC DIS 15408-3:2020(E)

ALC_TDA.1.6E

The evaluator shall confirm the developer’s ability to trace from the TOE to the list of unique
TOE implementation representation identifiers as recorded during the TOE generation time.

12.8.5 ALC_TDA.2 Matching CMS scope of implementation representation

Dependencies: ALC_CMS.3 Implementation representation CM coverage
Developer action elements
ALC_TDA.2.1D

The developer shall identify individual elements of the TOE implementation representation to record
the list of unique TOE implementation representation identifiers, as the development tool generates
the TOE.

ALC_TDA.2.2D

The developer shall use the current date and time to timestamp the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.2.3D

The developer shall maintain the integrity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time.

ALC_TDA.2.4D

The developer shall ensure the authenticity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time, with the maintenance of the (author)
origination information.

ALC_TDA.2.5D

The developer shall be able to trace from the TOE to the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.2.6D
The developer shall produce and provide documentation describing
a) the developer’s creation of the list of unique TOE implementation representation identifiers as

recorded during the TOE generation time;

b) the developer’s timestamp being applied to the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time;

c) the maintenance of the (author) origination information of the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time;

d) the maintenance of the integrity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time and its associated timestamp and (author)

origination information;

e) the developer’s mechanism to trace from the TOE to the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.2.7D

© ISO/IEC 2020 - All rights reserved 110



ISO/IEC DIS 15408-3:2020(E)

The developer shall provide evidence that the elements of implementation representation
under the configuration scope of ALC_CMS.3 are identified by the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time.

Content and presentation elements
ALC_TDA.2.1C

The list of unique TOE implementation representation identifiers as recorded during the TOE
generation time shall demonstrate the correspondence between the TOE implementation
representation element identifiers and the TOE implementation representation element names.

ALC_TDA.2.2C

The TOE implementation representation element names shall be in the same form as used or
referenced by the development tool to generate the TOE.

ALC_TDA.2.3C

The timestamp of the list of unique TOE implementation representation identifiers as recorded during
the TOE generation time shall be consistent with the creation time of the TOE.

ALC_TDA.2.4C

The (author) origination information of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time shall be consistent with the (author)
origination information of the TOE. The author origination information may be the name of an affiliate
of an organization.

ALC_TDA.2.5C

The list of identifiers of the elements of implementation representation under the
configuration scope of ALC_CMS.3 shall match with the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

Evaluator action elements
ALC_TDA.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ALC_TDA.2.2E

The evaluator shall confirm that the development tool for generating the TOE is capable to use or
reference the implementation representation element names.

ALC_TDA.2.3E

The evaluator shall confirm that the list of unique TOE implementation representation identifiers as
recorded during the TOE generation time is consistent with the creation time of the TOE.

ALC_TDA.2.4E

The evaluator shall confirm that the (author) origination information of the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time is consistent
with the (author) origination information of the TOE.

ALC_TDA.2.5E

The evaluator shall check the integrity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time and its associated timestamp and (author)
origination information.

ALC_TDA.2.6E

© ISO/IEC 2020 - All rights reserved 111



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm the developer’s ability to trace from the TOE to the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time.

ALC_TDA.2.7E

The evaluator shall confirm that the list of identifiers of the elements of implementation
representation under the configuration scope of ALC_CMS.3 matches with the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time.

12.8.6 ALC_TDA.3 Regenerate TOE with well-defined development tools

Dependencies: ALC_CMS.3 Implementation representation CM coverage
ALC_TAT.1 Well-defined development tools and

ADV_IMP.1 Implementation representation of the TSF
Developer action elements

ALC_TDA.3.1D

The developer shall identify individual elements of the TOE implementation representation to record
the list of unique TOE implementation representation identifiers, as the development tool generates
the TOE.

ALC_TDA.3.2D

The developer shall use the current date and time to timestamp the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.3.3D

The developer shall maintain the integrity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time.

ALC_TDA.3.4D

The developer shall ensure the authenticity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time, with the maintenance of the (author)
origination information.

ALC_TDA.3.5D

The developer shall be able to trace from the TOE to the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.3.6D
The developer shall produce and provide documentation describing
a) the developer’s creation of the list of unique TOE implementation representation identifiers as

recorded during the TOE generation time;

b) the developer’s timestamp being applied to the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time;

c) the maintenance of the (author) origination information of the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time;

d) the maintenance of the integrity of the list of unique TOE implementation representation

identifiers as recorded during the TOE generation time and its associated timestamp and (author)
origination information;

© ISO/IEC 2020 - All rights reserved 112



ISO/IEC DIS 15408-3:2020(E)

e) the developer’s mechanism to trace from the TOE to the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.3.7D

The developer shall provide evidence that the elements of implementation representation under the
configuration scope of ALC_CMS.3 are identified by the list of unique TOE implementation
representation identifiers as recorded during the TOE generation time.

ALC_TDA.3.8D

After applying the development tools to another copy of the TOE implementation
representation according to the list of unique TOE implementation representation identifiers
to regenerate a TOE copy, the developer shall explain the functional differences, if any, between
the TOE copy and the original TOE.

ALC_TDA.3.9D

The developer shall produce and provide documentation explaining the functional differences,
if any, between the regenerated TOE copy and the original TOE.

Content and presentation elements
ALC_TDA.3.1C

The list of unique TOE implementation representation identifiers as recorded during the TOE
generation time shall demonstrate the correspondence between the TOE implementation
representation element identifiers and the TOE implementation representation element names.

ALC_TDA.3.2C

The TOE implementation representation element names shall be in the same form as used or
referenced by the development tool to generate the TOE.

ALC_TDA.3.3C

The timestamp of the list of unique TOE implementation representation identifiers as recorded during
the TOE generation time shall be consistent with the creation time of the TOE.

ALC_TDA.3.4C

The (author) origination information of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time shall be consistent with the (author)
origination information of the TOE. The author origination information may be the name of an affiliate
of an organization.

ALC_TDA.3.5C

The list of identifiers of the elements of implementation representation under the configuration scope
of ALC_CMS.3 shall match with the list of unique TOE implementation representation identifiers as
recorded during the TOE generation time.

ALC_TDA.3.6C

The developer’s explanation of the functional differences, if any, between the regenerated TOE
copy and the original TOE shall take into account all visible differences, if any, between the
regenerated TOE copy and the original TOE

Evaluator action elements
ALC_TDA.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

© ISO/IEC 2020 - All rights reserved 113



ISO/IEC DIS 15408-3:2020(E)

ALC_TDA.3.2E

The evaluator shall confirm that the development tool for generating the TOE is capable to use or
reference the implementation representation element names.

ALC_TDA.3.3E

The evaluator shall confirm that the list of unique TOE implementation representation identifiers as
recorded during the TOE generation time is consistent with the creation time of the TOE.

ALC_TDA.3.4E

The evaluator shall confirm that the (author) origination information of the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time is consistent
with the (author) origination information of the TOE.

ALC_TDA.3.5E

The evaluator shall check the integrity of the list of unique TOE implementation representation
identifiers as recorded during the TOE generation time and its associated timestamp and (author)
origination information.

ALC_TDA.3.6E

The evaluator shall confirm the developer’s ability to trace from the TOE to the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time.

ALC_TDA.3.7E

The evaluator shall confirm that the list of identifiers of the elements of implementation
representation under the configuration scope of ALC_CMS.3 matches with the list of unique TOE
implementation representation identifiers as recorded during the TOE generation time.

ALC_TDA.3.8E

The evaluator shall check that the developer’s explanation of the functional differences, if any,
between the regenerated TOE copy and the original TOE takes into account all visible
differences, if any, between the regenerated TOE copy and the original TOE.

12.9 Tools and techniques (ALC_TAT)

12.9.1 Objectives

Tools and techniques is an aspect of selecting tools that are used to develop, analyse and implement
the TOE. It includes requirements to prevent ill-defined, inconsistent or incorrect development tools
from being used to develop the TOE. This includes, but is not limited to, programming languages,
documentation, implementation standards, and other parts of the TOE such as supporting runtime
libraries.

12.9.2 Component levelling

The components in this family are levelled on the basis of increasing requirements on the description
and scope of the implementation standards and the documentation of implementation-dependent
options.

12.9.3 Application notes
There is a requirement for well-defined development tools. These are tools that are clearly and
completely described. For example, programming languages and computer aided design (CAD)

systems that are based on a standard published by standards bodies are considered to be well-defined.
Self-made tools would need further investigation to clarify whether they are well-defined.

© ISO/IEC 2020 - All rights reserved 114



ISO/IEC DIS 15408-3:2020(E)

The requirement in ALC_TAT.1.2C is especially applicable to programming languages so as to ensure
that all statements in the source code have an unambiguous meaning.

In ALC_TAT.2 and ALC_TAT.3, implementation guidelines may be accepted as an implementation
standard if they have been approved by some group of experts (e.g. academic experts, standards
bodies). Implementation standards are normally public, well accepted and common practise in a
specific industry, but developer-specific implementation guidelines may also be accepted as a
standard; the emphasis is on the expertise.

Tools and techniques distinguishes between the implementation standards applied by the developer
(ALC_TAT.2.3D) and the implementation standards for “all parts of the TOE” (ALC_TAT.3.3D) which
include third party software, hardware, or firmware. The configuration list introduced in CM scope
(ALC_CMS) requires that for each TSF relevant configuration item to indicate if it has been generated
by the TOE developer or by third party developers

12.9.4 ALC_TAT.1 Well-defined development tools

Dependencies: ADV_IMP.1 Implementation representation of the TSF
Developer action elements
ALC_TAT.1.1D

The developer shall provide the documentation identifying each development tool being used
for the TOE.

ALC_TAT.1.2D

The developer shall document and provide the selected implementation-dependent options of
each development tool.

Content and presentation elements

ALC_TAT.1.1C

Each development tool used for implementation shall be well-defined.
ALC_TAT.1.2C

The documentation of each development tool shall unambiguously define the meaning of all
statements as well as all conventions and directives used in the implementation.

ALC_TAT.1.3C

The documentation of each development tool shall unambiguously define the meaning of all
implementation-dependent options.

Evaluator action elements
ALC_TAT.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

12.9.5 ALC_TAT.2 Compliance with implementation standards

Dependencies: ADV_IMP.1 Implementation representation of the TSF
Developer action elements
ALC_TAT.2.1D

The developer shall provide the documentation identifying each development tool being used for the
TOE.

© ISO/IEC 2020 - All rights reserved 115



ISO/IEC DIS 15408-3:2020(E)

ALC_TAT.2.2D

The developer shall document and provide the selected implementation-dependent options of each
development tool.

ALC_TAT.2.3D

The developer shall describe and provide the implementation standards that are being applied
by the developer.

Content and presentation elements

ALC_TAT.2.1C

Each development tool used for implementation shall be well-defined.
ALC_TAT.2.2C

The documentation of each development tool shall unambiguously define the meaning of all
statements as well as all conventions and directives used in the implementation.

ALC_TAT.2.3C

The documentation of each development tool shall unambiguously define the meaning of all
implementation-dependent options.

Evaluator action elements
ALC_TAT.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ALC_TAT.2.2E

The evaluator shall confirm that the implementation standards have been applied.

12.9.6 ALC_TAT.3 Compliance with implementation standards - all parts

Dependencies: ADV_IMP.1 Implementation representation of the TSF
Developer action elements
ALC_TAT.3.1D

The developer shall provide the documentation identifying each development tool being used for the
TOE.

ALC_TAT.3.2D

The developer shall document and provide the selected implementation-dependent options of each
development tool.

ALC_TAT.3.3D

The developer shall describe and provide the implementation standards that are being applied by the
developer and by any third-party providers for all parts of the TOE.

Content and presentation elements

ALC_TAT.3.1C

Each development tool used for implementation shall be well-defined.
ALC_TAT.3.2C

The documentation of each development tool shall unambiguously define the meaning of all
statements as well as all conventions and directives used in the implementation.

© ISO/IEC 2020 - All rights reserved 116



ISO/IEC DIS 15408-3:2020(E)

ALC_TAT.3.3C

The documentation of each development tool shall unambiguously define the meaning of all
implementation-dependent options.

Evaluator action elements
ALC_TAT.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ALC_TAT.3.2E
The evaluator shall confirm that the implementation standards have been applied.

12.10 Integration of composition parts and consistency check of delivery procedures
(ALC_COMP)

12.10.1 Objectives

The aim of this family is to determine whether

— the correct version of the dependent component is installed onto / embedded into the correct
version of the related base component, and

— the preparative guidance procedures of the base component developer and the dependent
component developer are compatible with the acceptance procedures of the composite product
integrator.

12.10.2 Component levelling

This family contains only one component.

12.10.3 Application notes

The composite product evaluator shall verify that the correct version of the dependent component
under evaluation has been installed onto / embedded into the evaluated version of the related base
component of the composite product.

The composite product evaluation sponsor shall ensure that appropriate evidence generated by the
composite product integrator is available for the composite product evaluator. This evidence may
include, amongst other, the configuration list of the base component developer (e.g. provided within
his acknowledgement statement).

The composite product evaluator shall verify that the delivery procedures of the base component
developer and the dependent component developer are compatible with the acceptance procedures
used by the composite product integrator.

The composite product evaluator shall verify that all configuration parameters prescribed by the base
component developer and the dependent component developer (e.g. pre-personalization data, pre-
personalisation scripts) are used by the composite product integrator.

The composite product evaluation sponsor shall ensure that appropriate evidence generated by the
composite product integrator is available for the composite product evaluator. This evidence may
include, amongst other, the element of evidence for the dependent component reception, acceptance
and parameterisation by the base component developer (e.g. in form of his acknowledgement
statement).

© ISO/IEC 2020 - All rights reserved 117



ISO/IEC DIS 15408-3:2020(E)

12.10.4 ALC_COMP.1 Integration of the dependent component into the related base component
and Consistency check for delivery and acceptance procedures

Dependencies: No dependencies

Developer action elements

ALC_COMP.1.1D

The developer shall provide components configuration evidence.
Content and presentation elements

ALC_COMP.1.1C

The components configuration evidence shall show that the evaluated version of the dependent
component has been installed onto / embedded into the evaluated version of the related base
component.

ALC_COMP.1.2C
The components configuration evidence shall show that:

i. The evidence for delivery and acceptance compatibility shall show that the delivery
procedures of the base component developer and the dependent component developer are
compatible with the acceptance procedures of the composite product integrator.

ii. The evidence shall show that preparative guidance procedures prescribed by the base
component developer and the dependent component developer are either actually being
used by the composite product integrator or compatible with the composite product
integrator guidance and do not contradict each other.

Evaluator action elements
ALC_COMP.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ALC_COMP.1.2E

The evaluator shall confirm that the evidence for delivery compatibility is complete, coherent,
and internally consistent.

13 Class ATE: Tests
13.1 Introduction

The class “Tests” encompasses five families: Coverage (ATE_COV), Depth (ATE_DPT), Independent
testing (ATE_IND) (i.e. functional testing performed by evaluators), Functional tests (ATE_FUN) and
Composite functional testing (ATE_COMP). Testing provides assurance that the TSF behaves as
described (in the functional specification, TOE design, implementation representation, and allows
straightforward traceability of SFR in test scenario).

The emphasis in this class is on confirmation that the TSF operates according to its design
descriptions. This class does not address penetration testing, which is based upon an analysis of the
TSF that specifically seeks to identify vulnerabilities in the design and implementation of the TSF.
Penetration testing is addressed separately as an aspect of vulnerability assessment in the AVA:
Vulnerability assessment class.

© ISO/IEC 2020 - All rights reserved 118



ISO/IEC DIS 15408-3:2020(E)

The ATE: Tests class separates testing into developer testing and evaluator testing. The Coverage
(ATE_COV), and Depth (ATE_DPT) families address the completeness of developer testing. Coverage
(ATE_COV) addresses the rigour with which the functional specification is tested; Depth (ATE_DPT)
addresses whether testing against other design descriptions (security architecture, TOE design, and
implementation representation) is required.

Functional tests (ATE_FUN) addresses the performing of the tests by the developer and how this
testing should be documented. Finally, Independent testing (ATE_IND) then addresses evaluator
testing: whether the evaluator should repeat part or all of the developer testing and how much
independent testing the evaluator should do.

Composite functional testing (ATE_COMP) determines whether the composite product as a whole
exhibits the properties necessary to satisfy the functional requirements of its Security Target.

Figure 11 shows the families within this class, and the hierarchy of components within the families.

ATE_COV: Coverage 1 2 3
ATE_DPT: Depth 1 2 3 4
ATE_FUN: Functional tests 1 2
ATE_IND: Independent testing 1 2 3
ATE_COMP: Compaosite functional testing 1

Figure 11 — ATE: Tests class decomposition

13.2 Coverage (ATE_COV)

13.2.1 Objectives

This family establishes that the TSF has been tested against its functional specification. This is
achieved through an examination of developer evidence of correspondence.

13.2.2 Component levelling

The components in this family are levelled on the basis of specification.

13.2.3 Application notes

13.2.4 ATE_COV.1 Evidence of coverage

Dependencies: ADV_FSP.2 Security-enforcing functional specification

ATE_FUN.1 Functional testing
Objectives

The objective of this component is to establish that some of the TSFIs have been tested.
Application notes

In this component the developer shows how tests in the test documentation correspond to TSFIs in the
functional specification. This can be achieved by a statement of correspondence, perhaps using a table.

© ISO/IEC 2020 - All rights reserved 119



ISO/IEC DIS 15408-3:2020(E)

Developer action elements

ATE_COV.1.1D

The developer shall provide evidence of the test coverage.
Content and presentation elements

ATE_COV.1.1C

The evidence of the test coverage shall show the correspondence between the tests in the test
documentation and the TSFIs in the functional specification.

Evaluator action elements
ATE_COV.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

13.2.5 ATE_COV.2 Analysis of coverage

Dependencies: ADV_FSP.2 Security-enforcing functional specification

ATE_FUN.1 Functional testing
Objectives

The objective of this component is to confirm that all of the TSFIs have been tested.
Application notes

In this component the developer confirms that tests in the test documentation correspond to all of the
TSFIs in the functional specification. This can be achieved by a statement of correspondence, perhaps
using a table, but the developer also provides an analysis of the test coverage.

Developer action elements

ATE_COV.2.1D

The developer shall provide an analysis of the test coverage.
Content and presentation elements

ATE_COV.2.1C

The analysis of the test coverage shall demonstrate the correspondence between the tests in the test
documentation and the TSFIs in the functional specification.

ATE_COV.2.2C

The analysis of the test coverage shall demonstrate that all TSFIs in the functional specification
have been tested.

Evaluator action elements
ATE_COV.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

13.2.6 ATE_COV.3 Rigorous analysis of coverage

Dependencies: ADV_FSP.2 Security-enforcing functional specification

ATE_FUN.1 Functional testing
Objectives

© ISO/IEC 2020 - All rights reserved 120



ISO/IEC DIS 15408-3:2020(E)

In this component, the objective is to confirm that the developer performed exhaustive tests of all
interfaces in the functional specification.

The objective of this component is to confirm that all parameters of all of the TSFIs have been tested.
Application notes

In this component the developer is required to show how tests in the test documentation correspond
to all of the TSFIs in the functional specification. This can be achieved by a statement of
correspondence, perhaps using a table, but in addition the developer is required to demonstrate that
the tests exercise all of the parameters of all TSFIs. This additional requirement includes bounds
testing (i.e. verifying that errors are generated when stated limits are exceeded) and negative testing
(e.g. when access is given to User A, verifying not only that User A now has access, but also that User B
did not suddenly gain access). This kind of testing is not, strictly speaking, exhaustive because not
every possible value of the parameters is expected to be checked.

Developer action elements

ATE_COV.3.1D

The developer shall provide an analysis of the test coverage.
Content and presentation elements

ATE_COV.3.1C

The analysis of the test coverage shall demonstrate the correspondence between the tests in the test
documentation and the TSFIs in the functional specification.

ATE_COV.3.2C

The analysis of the test coverage shall demonstrate that all TSFIs in the functional specification have
been completely tested.

Evaluator action elements
ATE_COV.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

13.3 Depth (ATE_DPT)

13.3.1 Objectives

The components in this family deal with the level of detail to which the TSF is tested by the developer.
Testing of the TSF is based upon increasing depth of information derived from additional design
representations and descriptions (TOE design, implementation representation, and security
architecture description).

The objective is to counter the risk of missing an error in the development of the TOE. Testing that
exercises specific internal interfaces can provide assurance not only that the TSF exhibits the desired
external security behaviour, but also that this behaviour stems from correctly operating internal
functionality.

13.3.2 Component levelling
The components in this family are levelled on the basis of increasing detail provided in the TSF

representations, from the TOE design to the implementation representation. This levelling reflects the
TSF representations presented in the ADV class.

© ISO/IEC 2020 - All rights reserved 121



ISO/IEC DIS 15408-3:2020(E)

13.3.3 Application notes

The TOE design describes the internal components (e.g. subsystems) and, perhaps, modules of the TSF,
together with a description of the interfaces among these components and modules. Evidence of
testing of this TOE design must show that the internal interfaces have been exercised and seen to
behave as described. This may be achieved through testing via the external interfaces of the TSF, or by
testing of the TOE subsystem or module interfaces in isolation, perhaps employing a test harness. In
cases where some aspects of an internal interface cannot be tested via the external interfaces, there
should either be justification that these aspects need not be tested, or the internal interface needs to
be tested directly. In the latter case the TOE design needs to be sufficiently detailed in order to
facilitate direct testing.

In cases where the description of the TSF's architectural soundness (in Security Architecture
(ADV_ARC)) cites specific mechanisms, the tests performed by the developer must show that the
mechanisms have been exercised and seen to behave as described.

At the highest component of this family, the testing is performed not only against the TOE design, but
also against the implementation representation.

13.3.4 ATE_DPT.1 Testing: basic design

Dependencies: ADV_ARC.1 Security architecture description
ADV_TDS.2 Architectural design

ATE_FUN.1 Functional testing
Objectives

The subsystem descriptions of the TSF provide a high-level description of the internal workings of the
TSF. Testing at the level of the TOE subsystems provides assurance that the TSF subsystems behave
and interact as described in the TOE design and the security architecture description.

Developer action elements

ATE_DPT.1.1D

The developer shall provide the analysis of the depth of testing.
Content and presentation elements

ATE_DPT.1.1C

The analysis of the depth of testing shall demonstrate the correspondence between the tests in
the test documentation and the TSF subsystems in the TOE design.

ATE_DPT.1.2C

The analysis of the depth of testing shall demonstrate that all TSF subsystems in the TOE design
have been tested.

Evaluator action elements
ATE_DPT.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

13.3.5 ATE_DPT.2 Testing: security enforcing modules

Dependencies: ADV_ARC.1 Security architecture description
ADV_TDS.3 Basic modular design

© ISO/IEC 2020 - All rights reserved 122



ISO/IEC DIS 15408-3:2020(E)

ATE_FUN.1 Functional testing
Objectives

The subsystem and module descriptions of the TSF provide a high-level description of the internal
workings, and a description of the interfaces of the SFR-enforcing modules, of the TSF. Testing at this
level of TOE description provides assurance that the TSF subsystems and SFR-enforcing modules
behave and interact as described in the TOE design and the security architecture description.

Developer action elements

ATE_DPT.2.1D

The developer shall provide the analysis of the depth of testing.
Content and presentation elements

ATE_DPT.2.1C

The analysis of the depth of testing shall demonstrate the correspondence between the tests in the test
documentation and the TSF subsystems and SFR-enforcing modules in the TOE design.

ATE_DPT.2.2C

The analysis of the depth of testing shall demonstrate that all TSF subsystems in the TOE design have
been tested.

ATE_DPT.2.3C

The analysis of the depth of testing shall demonstrate that the SFR-enforcing modules in the
TOE design have been tested.

Evaluator action elements
ATE_DPT.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

13.3.6 ATE_DPT.3 Testing: modular design

Dependencies: ADV_ARC.1 Security architecture description
ADV_TDS.4 Semiformal modular design

ATE_FUN.1 Functional testing
Objectives

The subsystem and module descriptions of the TSF provide a high-level description of the internal
workings, and a description of the interfaces of the modules, of the TSF. Testing at this level of TOE
description provides assurance that the TSF subsystems and modules behave and interact as
described in the TOE design and the security architecture description.

Developer action elements

ATE_DPT.3.1D

The developer shall provide the analysis of the depth of testing.
Content and presentation elements

ATE_DPT.3.1C

The analysis of the depth of testing shall demonstrate the correspondence between the tests in the test
documentation and the TSF subsystems and modules in the TOE design.

© ISO/IEC 2020 - All rights reserved 123



ISO/IEC DIS 15408-3:2020(E)

ATE_DPT.3.2C

The analysis of the depth of testing shall demonstrate that all TSF subsystems in the TOE design have
been tested.

ATE_DPT.3.3C

The analysis of the depth of testing shall demonstrate that all TSF modules in the TOE design have
been tested.

Evaluator action elements
ATE_DPT.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

13.3.7 ATE_DPT.4 Testing: implementation representation

Dependencies: ADV_ARC.1 Security architecture description
ADV_TDS.4 Semiformal modular design
ADV_IMP.1 Implementation representation of the TSF

ATE_FUN.1 Functional testing
Objectives

The subsystem and module descriptions of the TSF provide a high-level description of the internal
workings, and a description of the interfaces of the modules, of the TSF. Testing at this level of TOE
description provides assurance that the TSF subsystems and modules behave and interact as
described in the TOE design and the security architecture description, and in accordance with the
implementation representation.

Developer action elements

ATE_DPT.4.1D

The developer shall provide the analysis of the depth of testing.
Content and presentation elements

ATE_DPT.4.1C

The analysis of the depth of testing shall demonstrate the correspondence between the tests in the test
documentation and the TSF subsystems and modules in the TOE design.

ATE_DPT.4.2C

The analysis of the depth of testing shall demonstrate that all TSF subsystems in the TOE design have
been tested.

ATE_DPT.4.3C

The analysis of the depth of testing shall demonstrate that all modules in the TOE design have been
tested.

ATE_DPT.4.4C

The analysis of the depth of testing shall demonstrate that the TSF operates in accordance with
its implementation representation.

Evaluator action elements

ATE_DPT.4.1E

© ISO/IEC 2020 - All rights reserved 124



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

13.4 Functional tests (ATE_FUN)

13.4.1 Objectives

Functional testing performed by the developer provides assurance that the tests in the test
documentation are performed and documented correctly. The correspondence of these tests to the
design descriptions of the TSF is achieved through the Coverage (ATE_COV) and Depth (ATE_DPT)
families.

This family contributes to providing assurance that the likelihood of undiscovered flaws is relatively
small.

The families Coverage (ATE_COV), Depth (ATE_DPT) and Functional tests (ATE_FUN) are used in
combination to define the evidence of testing to be supplied by a developer. Independent functional
testing by the evaluator is specified by Independent testing (ATE_IND).

13.4.2 Component levelling

This family contains two components, the higher requiring that ordering dependencies are analysed.

13.4.3 Application notes

Procedures for performing tests are expected to provide instructions for using test programs and test
suites, including the test environment, test conditions, test data parameters and values. The test
procedures should also show how the test results are derived from the test inputs.

Ordering dependencies are relevant when the successful execution of a particular test depends upon
the existence of a particular state. For example, this might require that test A be executed immediately
before test B, since the state resulting from the successful execution of test A is a prerequisite for the
successful execution of test B. Thus, failure of test B could be related to a problem with the ordering
dependencies. In the above example, test B could fail because test C (rather than test A) was executed
immediately before it, or the failure of test B could be related to a failure of test A.

13.4.4 ATE_FUN.1 Functional testing

Dependencies: ATE_COV.1 Evidence of coverage
Objectives

The objective is for the developer to demonstrate that the tests in the test documentation are
performed and documented correctly.

Developer action elements

ATE_FUN.1.1D

The developer shall test the TSF and document the results.

ATE_FUN.1.2D

The developer shall provide test documentation.

Content and presentation elements

ATE_FUN.1.1C

The test documentation shall consist of test plans, expected test results and actual test results.

ATE_FUN.1.2C

© ISO/IEC 2020 - All rights reserved 125



ISO/IEC DIS 15408-3:2020(E)

The test plans shall identify the tests to be performed and describe the scenarios for
performing each test. These scenarios shall include any ordering dependencies on the results
of other tests.

ATE_FUN.1.3C

The expected test results shall show the anticipated outputs from a successful execution of the
tests.

ATE_FUN.1.4C

The actual test results shall be consistent with the expected test results.
Evaluator action elements

ATE_FUN.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

13.4.5 ATE_FUN.2 Ordered functional testing

Dependencies: ATE_COV.1 Evidence of coverage
Objectives

The objectives are for the developer to demonstrate that the tests in the test documentation are
performed and documented correctly, and to ensure that testing is structured such as to avoid circular
arguments about the correctness of the interfaces being tested.

Application notes

Although the test procedures may state pre-requisite initial test conditions in terms of ordering of
tests, they may not provide a rationale for the ordering. An analysis of test ordering is an important
factor in determining the adequacy of testing, as there is a possibility of faults being concealed by the
ordering of tests.

Developer action elements

ATE_FUN.2.1D

The developer shall test the TSF and document the results.

ATE_FUN.2.2D

The developer shall provide test documentation.

Content and presentation elements

ATE_FUN.2.1C

The test documentation shall consist of test plans, expected test results and actual test results.
ATE_FUN.2.2C

The test plans shall identify the tests to be performed and describe the scenarios for performing each
test. These scenarios shall include any ordering dependencies on the results of other tests.

ATE_FUN.2.3C

The expected test results shall show the anticipated outputs from a successful execution of the tests.
ATE_FUN.2.4C

The actual test results shall be consistent with the expected test results.

ATE_FUN.2.5C

© ISO/IEC 2020 - All rights reserved 126



ISO/IEC DIS 15408-3:2020(E)

The test documentation shall include an analysis of the test procedure ordering dependencies.
Evaluator action elements
ATE_FUN.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

13.5 Independent testing (ATE_IND)

13.5.1 Objectives

The objectives of this family are built upon the assurances achieved in the ATE_FUN, ATE_COV, and
ATE_DPT families by verifying the developer testing and performing additional tests by the evaluator.

13.5.2 Component levelling

Levelling is based upon the amount of developer test documentation and test support and the amount
of evaluator testing.

13.5.3 Application notes

This family deals with the degree to which there is independent functional testing of the TSF.
Independent functional testing may take the form of repeating the developer's functional tests (in
whole or in part) or of extending the scope or the depth of the developer's tests. These activities are
complementary, and an appropriate mix must be planned for each TOE, which takes into account the
availability and coverage of test results, and the functional complexity of the TSF.

Sampling of developer tests is intended to provide confirmation that the developer has carried out his
planned test programme on the TSF, and has correctly recorded the results. The size of sample
selected will be influenced by the detail and quality of the developer's functional test results. The
evaluator will also need to consider the scope for devising additional tests, and the relative benefit that
may be gained from effort in these two areas. It is recognized that repetition of all developer tests may
be feasible and desirable in some cases, but may be very arduous and less productive in others. The
highest component in this family should therefore be used with caution. Sampling will address the
whole range of test results available, including those supplied to meet the requirements of both
Coverage (ATE_COV) and Depth (ATE_DPT).

There is also a need to consider the different configurations of the TOE that are included within the
evaluation. The evaluator will need to assess the applicability of the results provided, and to plan his
own testing accordingly.

The suitability of the TOE for testing is based on the access to the TOE, and the supporting
documentation and information required (including any test software or tools) to run tests. The need
for such support is addressed by the dependencies to other assurance families.

Additionally, suitability of the TOE for testing may be based on other considerations. For example, the
version of the TOE submitted by the developer may not be the final version.

The term interfaces refers to interfaces described in the functional specification and TOE design, and
parameters passed through invocations identified in the implementation representation. The exact set
of interfaces to be used is selected through Coverage (ATE_COV) and the Depth (ATE_DPT)
components.

References to a subset of the interfaces are intended to allow the evaluator to design an appropriate
set of tests which is consistent with the objectives of the evaluation being conducted.

© ISO/IEC 2020 - All rights reserved 127



ISO/IEC DIS 15408-3:2020(E)

13.5.4 ATE_IND.1 Independent testing - conformance

Dependencies: ADV_FSP.1 Basic functional specification
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures
Objectives

In this component, the objective is to demonstrate that the TOE operates in accordance with its design
representations and guidance documents.

Application notes

This component does not address the use of developer test results. It is applicable where such results
are not available, and also in cases where the developer's testing is accepted without validation. The
evaluator is required to devise and conduct tests with the objective of confirming that the TOE
operates in accordance with its design representations, including but not limited to the functional
specification. The approach is to gain confidence in correct operation through representative testing,
rather than to conduct every possible test. The extent of testing to be planned for this purpose is a
methodology issue, and needs to be considered in the context of a particular TOE and the balance of
other evaluation activities.

Developer action elements

ATE_IND.1.1D

The developer shall provide the TOE for testing.
Content and presentation elements
ATE_IND.1.1C

The TOE shall be suitable for testing.

Evaluator action elements

ATE_IND.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ATE_IND.1.2E

The evaluator shall test a subset of the TSF to confirm that the TSF operates as specified.
13.5.5 ATE_IND.2 Independent testing - sample

Dependencies: ADV_FSP.2 Security-enforcing functional specification
AGD_OPE.1 Operational user guidance
AGD_PRE.1 Preparative procedures
ATE_COV.1 Evidence of coverage

ATE_FUN.1 Functional testing
Objectives

In this component, the objective is to demonstrate that the TOE operates in accordance with its design
representations and guidance documents. Evaluator testing confirms that the developer performed
some tests of some interfaces in the functional specification.

Application notes

© ISO/IEC 2020 - All rights reserved 128



ISO/IEC DIS 15408-3:2020(E)

The intent is that the developer should provide the evaluator with materials necessary for the efficient
reproduction of developer tests. This may include such things as machine-readable test
documentation, test programs, etc.

This component contains a requirement that the evaluator has available test results from the
developer to supplement the programme of testing. The evaluator will repeat a sample of the
developer's tests to gain confidence in the results obtained. Having established such confidence the
evaluator will build upon the developer's testing by conducting additional tests that exercise the TOE
in a different manner. By using a platform of validated developer test results the evaluator is able to
gain confidence that the TOE operates correctly in a wider range of conditions than would be possible
purely using the developer's own efforts, given a fixed level of resource. Having gained confidence that
the developer has tested the TOE, the evaluator will also have more freedom, where appropriate, to
concentrate testing in areas where examination of documentation or specialist knowledge has raised
particular concerns.

Developer action elements

ATE_IND.2.1D

The developer shall provide the TOE for testing.
Content and presentation elements
ATE_IND.2.1C

The TOE shall be suitable for testing.
ATE_IND.2.2C

The developer shall provide an equivalent set of resources to those that were used in the
developer's functional testing of the TSF.

Evaluator action elements
ATE_IND.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ATE_IND.2.2E

The evaluator shall execute a sample of tests in the test documentation to verify the developer
test results.

ATE_IND.2.3E

The evaluator shall test a subset of the TSF to confirm that the TSF operates as specified.
13.5.6 ATE_IND.3 Independent testing - complete

Dependencies: ADV_FSP.4 Complete functional specification
AGD_OPE.1 Operational user guidance
AGD_PRE.1 Preparative procedures
ATE_COV.1 Evidence of coverage

ATE_FUN.1 Functional testing
Objectives

In this component, the objective is to demonstrate that the TOE operates in accordance with its design
representations and guidance documents. Evaluator testing includes repeating all of the developer
tests.

© ISO/IEC 2020 - All rights reserved 129



ISO/IEC DIS 15408-3:2020(E)

Application notes

The intent is that the developer should provide the evaluator with materials necessary for the efficient
reproduction of developer tests. This may include such things as machine-readable test
documentation, test programs, etc.

In this component the evaluator must repeat all of the developer's tests as part of the programme of
testing. As in the previous component the evaluator will also conduct tests that aim to exercise the TSF
in a different manner from that achieved by the developer. In cases where developer testing has been
exhaustive, there may remain little scope for this.

Developer action elements

ATE_IND.3.1D

The developer shall provide the TOE for testing.
Content and presentation elements
ATE_IND.3.1C

The TOE shall be suitable for testing.
ATE_IND.3.2C

The developer shall provide an equivalent set of resources to those that were used in the developer's
functional testing of the TSF.

Evaluator action elements
ATE_IND.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ATE_IND.3.2E

The evaluator shall execute all tests in the test documentation to verify the developer test results.
ATE_IND.3.3E

The evaluator shall test the TSF to confirm that the entire TSF operates as specified.

13.6 Composite functional testing (ATE_COMP)

13.6.1 Objectives

The aim of this family is to determine whether the composite product as a whole exhibits the
properties necessary to satisfy the functional requirements of its composite product Security Target.

13.6.2 Component levelling

This family contains only one component.

13.6.3 Application notes

A composite product can be tested by testing its components separately and by testing the integrated
product. Separate testing means that its base component and its dependent component are being
tested independently of each other. A lot of tests of the base component may have been performed
within the scope of its accomplished evaluation. The dependent component may be tested on a
simulator or an emulator, which represent a virtual machine.

Integration testing means that the composite product is being tested as it is: the dependent component
is running together with the related base component.

© ISO/IEC 2020 - All rights reserved 130



ISO/IEC DIS 15408-3:2020(E)

Some dependent component functionality testing can only be performed on emulators, before its
embedding/integration onto the base component, as effectiveness of this testing may not be visible
using the interfaces of the composite product. Nevertheless, functional testing of the composite
product shall be performed also on composite product samples according to the description of the
security functions of the composite product and using the standard approach as required by the
relevant ATE assurance class. No additional developer’s action is required here.

Since the amount, the coverage and the depth of the functional tests of the base component have
already been validated by the base component evaluation, it is not necessary to re-perform these tasks
in the composite evaluation. Please note that the ETR for composite evaluation does not provide any
information on functional testing for the base component.

The behaviour of implementation of some SFRs can depend on properties of the base component as
well as on the dependent component (e.g. correctness of the measures of the composite product to
withstand a side channel attack or correctness of the implementation of tamper resistance against
physical attacks). In such case the SFR implementation shall be tested on the final composite product,
but not on a simulator or an emulator.

This family focuses exclusively on testing of the composite product as a whole and represents merely
partial efforts within the general test approach being covered by the assurance class ATE. These
integration tests shall be specified and performed, whereby the approach of the standard assurance
families of the class ATE shall be applied.

The composite product evaluation sponsor shall ensure that the following is available for the
composite product evaluator:

e composite product samples suitable for testing.

13.6.4 ATE_COMP.1 Composite product functional testing

Dependencies: No dependencies

Developer action elements

ATE_COMP.1.1D

The developer shall provide a set of tests as required by the assurance package chosen.
ATE_COMP.1.2D

The developer shall provide the composite product for testing.

Content and presentation elements

ATE_COMP.1.1C

Content and presentation of the specification and documentation of the integration tests shall
correspond to the standard!? requirements of the assurance families ATE_FUN and ATE_COV.

ATE_COMP.1.2C

The composite product provided shall be suitable for testing.
Evaluator action elements

ATE_COMP.1.1E

10 j.e. as defined by ISO/IEC 18045

© ISO/IEC 2020 - All rights reserved 131



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

14 Class AVA: Vulnerability assessment
14.1 Introduction

The AVA: Vulnerability assessment class addresses the possibility of exploitable vulnerabilities
introduced in the development or the operation of the TOE.

Figure 12 shows the families within this class, and the hierarchy of components within the families.

AVA_VAN: Vulnerability assessment 1 2 3 4 5

AVA_COMP: Compasite product vulnerability assessment 1

Figure 12 — AVA: Vulnerability assessment class decomposition

14.2 Application notes

Generally, the vulnerability assessment activity covers various vulnerabilities in the development and
operation of the TOE. Development vulnerabilities take advantage of some property of the TOE, or the
product where the TOE resides, which was introduced during its development, e.g. defeating the TSF
self-protection through tampering, direct attack or monitoring of the TSF, defeating the TSF domain
separation through monitoring or direct attack the TSF, or defeating non-bypassability through
circumventing (bypassing) the TSF. Explicit dependencies of the TOE on IT systems in the
environment must also be considered. Operational vulnerabilities take advantage of weaknesses in
non-technical countermeasures to violate the TOE SFRs, e.g. misuse or incorrect configuration. Misuse
investigates whether the TOE can be configured or used in a manner that is insecure, but that an
administrator or user of the TOE would reasonably believe to be secure.

Assessment of development vulnerabilities is covered by the assurance family AVA_VAN. Basically, all
development vulnerabilities can be considered in the context of AVA_VAN due to the fact, that this
family allows application of a wide range of assessment methodologies being unspecific to the kind of
an attack scenario. These unspecific assessment methodologies comprise, among other, also the
specific methodologies for those TSF where covert channels are to be considered (a channel capacity
estimation can be done using informal engineering measurements, as well as actual test
measurements) or can be overcome by the use of sufficient resources in the form of a direct attack
(underlying technical concept of those TSF is based on probabilistic or permutational mechanisms; a
qualification of their security behaviour and the effort required to overcome them can be made using a
quantitative or statistical analysis).

If there are security objectives specified in the ST to either to prevent one user of the TOE from
observing activity associated with another user of the TOE, or to ensure that information flows cannot
be used to achieve enforced illicit data signals, covert channel analysis should be considered during
the conduct of the vulnerability analysis. This is often reflected by the inclusion of Unobservability
(FPR_UNO) and multilevel access control policies specified through Access control policy (FDP_ACC)
and/or Information flow control policy (FDP_IFC) requirements in the ST.

© ISO/IEC 2020 - All rights reserved 132



ISO/IEC DIS 15408-3:2020(E)

14.3 Vulnerability analysis (AVA_VAN)
14.3.1 Objectives

Vulnerability analysis is an assessment to determine whether potential vulnerabilities identified,
during the evaluation of the development and anticipated operation of the TOE or by other methods
(e.g. by flaw hypotheses or quantitative or statistical analysis of the security behaviour of the
underlying security mechanisms), could allow attackers to violate the SFRs.

Vulnerability analysis deals with the threats that an attacker will be able to discover flaws that will
allow unauthorised access to data and functionality, allow the ability to interfere with or alter the TSF,
or interfere with the authorized capabilities of other users.

In case of a multi-assurance evaluation the vulnerability analysis shall assess the defined sub-TSF as
well as the TOE as a whole.

14.3.2 Component levelling

Levelling is based on an increasing rigour of vulnerability analysis by the evaluator and increased
levels of attack potential required by an attacker to identify and exploit the potential vulnerabilities.
14.3.3 AVA_VAN.1 Vulnerability survey

Dependencies: ADV_FSP.1 Basic functional specification
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures
Objectives

A vulnerability survey of information available in the public domain is performed by the evaluator to
ascertain potential vulnerabilities that may be easily found by an attacker.

The evaluator performs penetration testing, to confirm that the potential vulnerabilities cannot be
exploited in the operational environment for the TOE. Penetration testing is performed by the
evaluator assuming an attack potential of Basic.

Developer action elements

AVA_VAN.1.1D

The developer shall provide the TOE for testing.
Content and presentation elements
AVA_VAN.1.1C

The TOE shall be suitable for testing.

Evaluator action elements

AVA_VAN.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

AVA_VAN.1.2E

The evaluator shall perform a search of public domain sources to identify potential
vulnerabilities in the TOE.

AVA_VAN.1.3E

© ISO/IEC 2020 - All rights reserved 133



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall conduct penetration testing, based on the identified potential
vulnerabilities, to determine that the TOE is resistant to attacks performed by an attacker
possessing Basic attack potential.

14.3.4 AVA_VAN.2 Vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description
ADV_FSP.2 Security-enforcing functional specification
ADV_TDS.1 Basic design
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures
Objectives

A vulnerability analysis is performed by the evaluator to ascertain the presence of potential
vulnerabilities.

The evaluator performs penetration testing, to confirm that the potential vulnerabilities cannot be
exploited in the operational environment for the TOE. Penetration testing is performed by the
evaluator assuming an attack potential of Basic.

Developer action elements

AVA_VAN.2.1D

The developer shall provide the TOE for testing.
AVA_VAN.2.2D

The developer shall provide a list of third--party components included in the TOE and the TOE
delivery.

Content and presentation elements
AVA_VAN.2.1C

The TOE shall be suitable for testing.
AVA_VAN.2.2C

The list of third--party components shall include components provided by third parties, and
that are part of the TOE or otherwise part of the TOE delivery.

Evaluator action elements
AVA_VAN.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

AVA_VAN.2.2E

The evaluator shall perform a search of public domain sources to identify potential vulnerabilities in
the TOE the components in the list of third--party components, and specific IT products in the
environment that the TOE depends on.

AVA_VAN.2.3E

The evaluator shall perform an independent vulnerability analysis of the TOE using the
guidance documentation, functional specification, TOE design and security architecture
description to identify potential vulnerabilities in the TOE.

AVA_VAN.2.4E

© ISO/IEC 2020 - All rights reserved 134



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall conduct penetration testing, based on the identified potential vulnerabilities, to
determine that the TOE is resistant to attacks performed by an attacker possessing Basic attack
potential.

14.3.5 AVA_VAN.3 Focused vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description
ADV_FSP.4 Complete functional specification
ADV_TDS.3 Basic modular design
ADV_IMP.1 Implementation representation of the TSF
AGD_OPE.1 Operational user guidance
AGD_PRE.1 Preparative procedures

ATE_DPT.1 Testing: basic design
Objectives

A vulnerability analysis is performed by the evaluator to ascertain the presence of potential
vulnerabilities.

The evaluator performs penetration testing, to confirm that the potential vulnerabilities cannot be
exploited in the operational environment for the TOE. Penetration testing is performed by the
evaluator assuming an attack potential of Enhanced-Basic.

Developer action elements

AVA_VAN.3.1D

The developer shall provide the TOE for testing.
AVA_VAN.3.2D

The developer shall provide a list of third--party components included in the TOE and the TOE
delivery.

Content and presentation elements
AVA_VAN.3.1C

The TOE shall be suitable for testing.
AVA_VAN.3.2C

The list of third--party components shall include components provided by third parties, and that are
part of the TOE or otherwise part of the TOE delivery.

Evaluator action elements
AVA_VAN.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

AVA_VAN.3.2E

The evaluator shall perform a search of public domain sources to identify potential vulnerabilities in
the TOE the components in the list of third--party components, and specific IT products in the
environment that the TOE depends on.

AVA_VAN.3.3E

© ISO/IEC 2020 - All rights reserved 135



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall perform an independent, focused vulnerability analysis of the TOE using the
guidance documentation, functional specification, TOE design, security architecture description and
implementation representation to identify potential vulnerabilities in the TOE.

AVA_VAN.3.4E

The evaluator shall conduct penetration testing, based on the identified potential vulnerabilities, to
determine that the TOE is resistant to attacks performed by an attacker possessing Enhanced-Basic
attack potential.

14.3.6 AVA_VAN.4 Methodical vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description
ADV_FSP.4 Complete functional specification
ADV_TDS.3 Basic modular design
ADV_IMP.1 Implementation representation of the TSF
AGD_OPE.1 Operational user guidance
AGD_PRE.1 Preparative procedures

ATE_DPT.1 Testing: basic design
Objectives

A methodical vulnerability analysis is performed by the evaluator to ascertain the presence of
potential vulnerabilities.

The evaluator performs penetration testing, to confirm that the potential vulnerabilities cannot be
exploited in the operational environment for the TOE. Penetration testing is performed by the
evaluator assuming an attack potential of Moderate.

Developer action elements

AVA_VAN.4.1D

The developer shall provide the TOE for testing.
AVA_VAN.4.2D

The developer shall provide a list of third--party components included in the TOE and the TOE
delivery.

Content and presentation elements
AVA_VAN.4.1C

The TOE shall be suitable for testing.
AVA_VAN.4.2C

The list of third--party components shall include components provided by third parties, and that are
part of the TOE or otherwise part of the TOE delivery.

Evaluator action elements
AVA_VAN.4.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

AVA_VAN.4.2E

© ISO/IEC 2020 - All rights reserved 136



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall perform a search of public domain sources to identify potential vulnerabilities in
the TOE the components in the list of third--party components, and specific IT products in the
environment that the TOE depends on.

AVA_VAN.4.3E

The evaluator shall perform an independent, methodical vulnerability analysis of the TOE using the
guidance documentation, functional specification, TOE design, security architecture description and
implementation representation to identify potential vulnerabilities in the TOE.

AVA_VAN.4.4E

The evaluator shall conduct penetration testing based on the identified potential vulnerabilities to
determine that the TOE is resistant to attacks performed by an attacker possessing Moderate attack
potential.

14.3.7 AVA_VAN.5 Advanced methodical vulnerability analysis

Dependencies: ADV_ARC.1 Security architecture description
ADV_FSP.4 Complete functional specification
ADV_TDS.3 Basic modular design
ADV_IMP.1 Implementation representation of the TSF
AGD_OPE.1 Operational user guidance
AGD_PRE.1 Preparative procedures

ATE_DPT.1 Testing: basic design
Objectives

A methodical vulnerability analysis is performed by the evaluator to ascertain the presence of
potential vulnerabilities.

The evaluator performs penetration testing, to confirm that the potential vulnerabilities cannot be
exploited in the operational environment for the TOE. Penetration testing is performed by the
evaluator assuming an attack potential of High.

Developer action elements

AVA_VAN.5.1D

The developer shall provide the TOE for testing.
AVA_VAN.5.2D

The developer shall provide a list of third--party components included in the TOE and the TOE
delivery.

Content and presentation elements
AVA_VAN.5.1C

The TOE shall be suitable for testing.
AVA_VAN.5.2C

The list of third--party components shall include components provided by third parties, and that are
part of the TOE or otherwise part of the TOE delivery.

Evaluator action elements
AVA_VAN.5.1E

© ISO/IEC 2020 - All rights reserved 137



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

AVA_VAN.5.2E

The evaluator shall perform a search of public domain sources to identify potential vulnerabilities in
the TOE the components in the list of third--party components, and specific IT products in the
environment that the TOE depends on.

AVA_VAN.5.3E

The evaluator shall perform an independent, methodical vulnerability analysis of the TOE using the
guidance documentation, functional specification, TOE design, security architecture description and
implementation representation to identify potential vulnerabilities in the TOE.

AVA_VAN.5.4E

The evaluator shall conduct penetration testing based on the identified potential vulnerabilities to
determine that the TOE is resistant to attacks performed by an attacker possessing High attack
potential.

14.4 Composite vulnerability assessment (AVA_COMP)

14.4.1 Objectives

The aim of this family is to determine the exploitability of flaws or weaknesses in the composite
product as a whole in the intended environment.

14.4.2 Component levelling

This family contains only one component.

Application notes

This family focuses exclusively on the vulnerability assessment of the composite product as a whole
and represents merely partial efforts within the general approach being covered by the standard!!
assurance family of the class AVA: AVA_VAN.

The composite product evaluator shall perform a vulnerability analysis for the composite product
using, amongst other, the results of the base component evaluation. This vulnerability analysis shall be
confirmed by penetration testing.

The composite product evaluator shall check that the confidentiality protection of the dependent
component embedded into/installed onto the base component is consistent with the confidentiality
level claimed by the dependent component developer for ALC_DVS.

In special cases, the vulnerability analysis and the definition of attacks might be difficult, need
considerable time and require extensive pre-testing, if only documentation is available. The base
component may also be used in a way that was not foreseen by the base component developer and the
base component evaluator, or the dependent component developer may not have followed the
stipulations provided with the base component. Different possibilities exist to shorten composite
product vulnerability analysis in such cases: E.g. the composite product evaluator may consult the base

11 e, as defined by ISO/IEC 18045

© ISO/IEC 2020 - All rights reserved 138



ISO/IEC DIS 15408-3:2020(E)

component evaluator and draw on his experience gained during the base component evaluation.
Alternatively, an approach aiming on the separation of vulnerabilities of the dependent component
and the base component by using specific test samples of the base component on which the composite
product evaluator may load test dependent components on his own discretion. The intention hereby is
to use test dependent components without countermeasures and without deactivating any base
component inherent countermeasure.

The results of the vulnerability assessment for the base component of the composite product
represented in the ETR for composite evaluation can be re-used under the following conditions: they
are up-to-date and all composite activities for correctness - ASE_COMP.1, ALC_COMP.1, ADV_COMP.1
and ATE_COMP.1 - are finalised with the verdict PASS.

Due to composing of the base component and the dependent component a new quality arises, which
may cause additional vulnerabilities of the base component which might be not mentioned in the ETR
for composite evaluation. In these circumstances the composite product evaluation authority may
require a re-assessment or re-evaluation of the base component focusing on the new vulnerabilities’
issues.

The composite product evaluation sponsor shall ensure that the following is made available for the
composite product evaluator:

— the base component-related user guidance,

— the base component-related ETR for composite evaluation prepared by the base component
evaluator,

— the report of the base component evaluation authority.

14-4-414.4.3 AVA_COMP.1 Composite product vulnerability assessment

Dependencies: No dependencies

Developer action elements

AVA_COMP.1.1D

The developer shall provide the composite product for penetrationg testing.
Content and presentation elements

AVA_COMP.1.1C

The composite product provided shall be suitable for testing as a whole.
Evaluator action elements

AVA_COMP.1.1E

The evaluator shall conduct penetration testing of the composite product as a whole building
on the evaluator’s own vulnerability analysis to ensure that the vulnerabilities being relevant
for the composite product Security Target are not exploitable.

15 Class ACO: Composition
15.1 Introduction
The class ACO: Composition encompasses five families. These families specify assurance requirements

that are designed to provide confidence that a composed TOE will operate securely when relying upon
security functionality provided by previously evaluated software, firmware or hardware components.

© ISO/IEC 2020 - All rights reserved 139



ISO/IEC DIS 15408-3:2020(E)

Composition involves taking two or more IT entities successfully evaluated against the ISO/IEC 15408
series security assurance requirements packages (base components and dependent components, see
Annex B) and combining them for use, with no further development of either IT entity. The
development of additional IT entities is not included (entities that have not previously been the
subject of a component evaluation). The composed TOE forms a new product that can be installed and
integrated into any specific environment instance that meets the objectives for the environment.

This approach does not provide an alternative approach for the evaluation of components.
Composition under ACO provides a composed TOE integrator a method, which can be used as an
alternative to other assurance levels specified in ISO/IEC 15408, to gain confidence in a TOE that is the
combination of two or more successfully evaluated components without having to re-evaluate the
composite TSF. (The composed TOE integrator is referred to as “developer” throughout the ACO class,
with any references to the developer of the base or dependent components clarified as such.)

Composed Assurance Packages, as defined in part 5 provide an assurance scale for composed TOEs.
This assurance scale is required in addition to other assurance packages, for example the EALs,
because to combine components evaluated against another assurance package and gain equivalent
assurance in the resulting composed TOE, all SARs have to be applied to the composed TOE. Although
reuse can be made of the component TOE evaluation results, there are often additional aspects of the
components that have to be considered in the composed TOE, as described in Annex B.3. Due to the
different parties involved in a composed TOE evaluation activity it is generally not possible to gain all
necessary evidence about these additional aspects of the components to apply the appropriate EAL.
Hence, CAPs have been defined to address the issue of combining evaluated components and gaining a
meaningful result. This is discussed further in Annex B.

Dependent component-a

TSF-a

Non-TSF-a

ACO_REL
(component-a)

ACO_DEV

:-‘::E;x{oizm 0 4 ] : " (component-b)
TFSlb  [* .

S

T TSF-b ‘

Non-TSF-b

Base component-b

Figure 13 — Relationship between ACO families and interactions between components

In a composed TOE it is generally the case that one component relies on the services provided by
another component. The component requiring services is termed the dependent component and the
component providing the services is termed the base component. This interaction and distinct is
discussed further in Annex B. It is assumed to be the case that the developer of the dependent
component is supporting the composed TOE evaluation in some manner (as developer, sponsor, or
just cooperating and providing the necessary evaluation evidence from the dependent component

© ISO/IEC 2020 - All rights reserved 140



ISO/IEC DIS 15408-3:2020(E)

evaluation) The ACO components included in the CAP assurance packages should not be used as
augmentations for component TOE evaluations, as this would provide no meaningful assurance for the
component.

The families within the ACO class interact in a similar manner to the ADV, ATE and AVA classes in a
component TOE evaluation and hence leverage from the specification of requirements from those
classes where applicable. There are however a few items specific to composed TOE evaluations. To
determine how the components interact and identify any deviations from the evaluations of the
components, the dependencies that the dependent component has upon the underlying base
component are identified (ACO_REL). This reliance on the base component is specified in terms of the
interfaces through which the dependent component makes calls for services in support of the
dependent component SFRs. The interfaces, and at higher levels the supporting behaviour, provided
by the base component in response to those service requests are analysed in ACO_DEV. The ACO_DEV
family is based on the ADV_TDS family, as at the simplest level the TSF of each component can be
viewed as a subsystem of the composed TOE, with additional portions of each component seen as
additional subsystems. Therefore, the interfaces between the components are seen as interactions
between subsystems in a component TOE evaluation-{see-Figure-133.

It is possible that the interfaces and supporting behaviour descriptions provided for ACO_DEV are
incomplete. This is determined during the conduct of ACO_COR. The ACO_COR family takes the outputs
of ACO_REL and ACO_DEV and determines whether the components are being used in their evaluated
configuration and identifies where any specifications are incomplete, which are then identified as
inputs into testing (ACO_CTT) and vulnerability analysis (ACO_VUL) activities of the composed TOE.

Testing of the composed TOE is performed to determine that the composed TOE exhibits the expected
behaviour as determined by the composed TOE SFRs, and at higher levels demonstrates the
compatibility of the interfaces between the components of the composed TOE.

The vulnerability analysis of the composed TOE leverages from the outputs of the vulnerability
analysis of the component evaluations. The composed TOE vulnerability analysis considers any
residual vulnerabilities from the component evaluations to determine that the residual vulnerabilities
are not applicable to the composed TOE. A search of publicly available information relating to the
components is also performed to identify any issues reported in the components since the completion
of the respective evaluations.

The interaction between the ACO families is depicted in Figure 14 below. This shows by solid arrowed
lines where the evidence and understanding gained in one family feeds into the next activity and the
dashed arrows identify where an activity explicitly traces back to the composed TOE SFRs, as
described above.

ASE
ACO_REL
ACO_DEV

1" Aco_cor

ACO_CTT

.( Aco_vuL

Figure 14 — Relationship between ACO families

© ISO/IEC 2020 - All rights reserved 141



ISO/IEC DIS 15408-3:2020(E)

Further discussion of the definition and interactions within composed TOEs is provided in Annex B.

Figure 15 shows the families within this class, and the hierarchy of components within the families.

ACO_COR: Composition rationale 1

ACO_DEV: Development evidence 1 2 3
ACE_REL: Reliance of dependent component 1 2

ACO_CTT: Composed TOE testing 1 2
ACO_VUL: Compaosition vulnerability analysis 1 2 3

Figure 15 — ACO: Composition class decomposition

15.2 Composition rationale (ACO_COR)
15.2.1 Objectives
This family addresses the requirement to demonstrate that the base component can provide an

appropriate level of assurance for use in composition.

15.2.2 Component levelling

There is only a single component in this family.
15.2.3 ACO_COR.1 Composition rationale

Dependencies: ACO_DEV.1 Functional Description
ALC_CMC.1 Labelling of the TOE

ACO_REL.1 Basic reliance information
Developer action elements

ACO_COR.1.1D

The developer shall provide composition rationale for the base component.
Content and presentation elements

ACO_COR.1.1C

The composition rationale shall demonstrate that a level of assurance at least as high as that of
the dependent component has been obtained for the support functionality of the base
component, when the base component is configured as required to support the TSF of the
dependent component.

Evaluator action elements
ACO_COR.1.1E

The evaluator shall confirm that the information meets all requirements for content and
presentation of evidence.

© ISO/IEC 2020 - All rights reserved 142



ISO/IEC DIS 15408-3:2020(E)

15.3 Development evidence (ACO_DEV)
15.3.1 Objectives

This family sets out requirements for a specification of the base component in increasing levels of
detail. Such information is required to gain confidence that the appropriate security functionality is
provided to support the requirements of the dependent component (as identified in the reliance
information).

15.3.2 Component levelling

The components are levelled on the basis of increasing amounts of detail about the interfaces
provided, and how they are implemented.

15.3.3 Application notes

The TSF of the base component is often defined without knowledge of the dependencies of the
possible applications with which it may by composed. The TSF of this base component is defined to
include all parts of the base component that have to be relied upon for enforcement of the base
component SFRs. This will include all parts of the base component required to implement the base
component SFRs.

The functional specification of the base component will describe the TSFI in terms of the interfaces the
base component provides to allow an external entity to invoke operations of the TSF. This includes
interfaces to the human user to permit interaction with the operation of the TSF invoking SFRs and
also interfaces allowing an external IT entity to make calls into the TSF.

The functional specification only provides a description of what the TSF provides at its interface and
the means by which that TSF functionality are invoked. Therefore, the functional specification does not
necessarily provide a complete interface specification of all possible interfaces available between an
external entity and the base component. It does not include what the TSF expects/requires from the
operational environment. The description of what a dependent component TSF relies upon of a base
component is considered in Reliance of dependent component (ACO_REL) and the development
information evidence provides a response to the interfaces specified.

The development information evidence includes a specification of the base component. This may be
the evidence used during evaluation of the base component to satisfy the ADV requirements, or may
be another form of evidence produced by either the base component developer or the composed TOE
developer. This specification of the base component is used during Development evidence (ACO_DEV)
to gain confidence that the appropriate security functionality is provided to support the requirements
of the dependent component. The level of detail required of this evidence increases to reflect the level
of required assurance in the composed TOE. This is expected to broadly reflect the increasing
confidence gained from the application of the assurance packages to the components. The evaluator
determines that this description of the base component is consistent with the reliance information
provided for the dependent component.

15.3.4 ACO_DEV.1 Functional Description

Dependencies: ACO_REL.1 Basic reliance information
Objectives

A description of the interfaces in the base component, on which the dependent component relies, is
required. This is examined to determine whether or not it is consistent with the description of
interfaces on which the dependent component relies, as provided in the reliance information.

Developer action elements
ACO_DEV.1.1D

© ISO/IEC 2020 - All rights reserved 143



ISO/IEC DIS 15408-3:2020(E)

The developer shall provide development information for the base component.
Content and presentation elements
ACO_DEV.1.1C

The development information shall describe the purpose of each interface of the base
component used in the composed TOE.

ACO_DEV.1.2C

The development information shall show correspondence between the interfaces, used in the
composed TOE, of the base component and the dependent component to support the TSF of the
dependent component.

Evaluator action elements
ACO_DEV.1.1E

The evaluator shall confirm that the information meets all requirements for content and
presentation of evidence.

ACO_DEV.1.2E

The evaluator shall determine that the interface description provided is consistent with the
reliance information provided for the dependent component.

15.3.5 ACO_DEV.2 Basic evidence of design

Dependencies: ACO_REL.1 Basic reliance information
Objectives

A description of the interfaces in the base component, on which the dependent component relies, is
required. This is examined to determine whether or not it is consistent with the description of
interfaces on which the dependent component relies, as provided in the reliance information.

In addition, the security behaviour of the base component that supports the dependent component
TSF is described.

Developer action elements

ACO_DEV.2.1D

The developer shall provide development information for the base component.
Content and presentation elements

ACO_DEV.2.1C

The development information shall describe the purpose and method of use of each interface of the
base component used in the composed TOE.

ACO_DEV.2.2C

The development information shall provide a high-level description of the behaviour of the
base component, which supports the enforcement of the dependent component SFRs.

ACO_DEV.2.3C

The development information shall show correspondence between the interfaces, used in the
composed TOE, of the base component and the dependent component to support the TSF of the
dependent component.

Evaluator action elements
ACO_DEV.2.1E

© ISO/IEC 2020 - All rights reserved 144



ISO/IEC DIS 15408-3:2020(E)

The evaluator shall confirm that the information meets all requirements for content and presentation
of evidence.

ACO_DEV.2.2E

The evaluator shall determine that the interface description provided is consistent with the reliance
information provided for the dependent component.

15.3.6 ACO_DEV.3 Detailed evidence of design

Dependencies: ACO_REL.2 Reliance information
Objectives

A description of the interfaces in the base component, on which the dependent component relies, is
required. This is examined to determine whether or not it is consistent with the description of
interfaces on which the dependent component relies, as provided in the reliance information.

The interface description of the architecture of the base component is provided to enable the evaluator
to determine whether or not that interface formed part of the TSF of the base component.

Developer action elements

ACO_DEV.3.1D

The developer shall provide development information for the base component.
Content and presentation elements

ACO_DEV.3.1C

The development information shall describe the purpose and method of use of each interface of the
base component used in the composed TOE.

ACO_DEV.3.2C

The development information shall identify the subsystems of the base component that
provide interfaces of the base component used in the composed TOE.

ACO_DEV.3.3C

The development information shall provide a high-level description of the behaviour of the base
component subsystems, which support the enforcement of the dependent component SFRs.

ACO_DEV.3.4C

The development information shall provide a mapping from the interfaces to the subsystems of
the base component.

ACO_DEV.3.5C

The development information shall show correspondence between the interfaces, used in the
composed TOE, of the base component and the dependent component to support the TSF of the
dependent component.

Evaluator action elements
ACO_DEV.3.1E

The evaluator shall confirm that the information meets all requirements for content and presentation
of evidence.

ACO_DEV.3.2E

The evaluator shall determine that the interface description provided is consistent with the reliance
information provided for the dependent component.

© ISO/IEC 2020 - All rights reserved 145



ISO/IEC DIS 15408-3:2020(E)

15.4 Reliance of dependent component (ACO_REL)
15.4.1 Objectives

The purpose of this family is to provide evidence that describes the reliance that a dependent
component has upon the base component. This information is useful to persons responsible for
integrating the component with other evaluated IT components to form the composed TOE, and for
providing insight into the security properties of the resulting composition.

This provides a description of the interface between the dependent and base components of the
composed TOE that may not have been analysed during evaluation of the individual components, as
the interfaces were not TSFIs of the individual component TOEs.

15.4.2 Component levelling

The components in this family are levelled according to the amount of detail provided in the
description of the reliance by the dependent component upon the base component.

15.4.3 Application notes

The Reliance of dependent component (ACO_REL) family considers the interactions between the
components where the dependent component relies upon a service from the base component to
support the operation of security functionality of the dependent component. The interfaces into these
services of the base component may not have been considered during evaluation of the base
component because the service in the base component was not considered security-relevant in the
component evaluation, either because of the inherent purpose of the service (e.g. adjust type font) or
because associated ISO/IEC 15408-2 SFRs are not being claimed in the base component's ST (e.g. the
login interface when no FIA: Identification and authentication SFRs are claimed). These interfaces into
the base component are often viewed as functional interfaces in the evaluation of the base component,
and are in addition to the security interfaces (TSFI) considered in the functional specification.

In summary, the TSFIs described in the functional specification only include the calls made into a TSF
by external entities and responses to those calls. Calls made by a TSF, which were not explicitly
considered during evaluation of the components, are described by the reliance information provided
to satisfy Reliance of dependent component (ACO_REL).

15.4.4 ACO_REL.1 Basic reliance information

Dependencies: No dependencies.

Developer action elements

ACO_REL.1.1D

The developer shall provide reliance information of the dependent component.
Content and presentation elements

ACO_REL.1.1C

The reliance information shall describe the functionality of the base component hardware,
firmware and/or software that is relied upon by the dependent component TSF.

ACO_REL.1.2C

The reliance information shall describe all interactions through which the dependent
component TSF requests services from the base component.

ACO_REL.1.3C

© ISO/IEC 2020 - All rights reserved 146



ISO/IEC DIS 15408-3:2020(E)

The reliance information shall describe how the dependent TSF protects itself from
interference and tampering by the base component.

Evaluator action elements
ACO_REL.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

15.4.5 ACO_REL.2 Reliance information

Dependencies: No dependencies.

Developer action elements

ACO_REL.2.1D

The developer shall provide reliance information of the dependent component.
Content and presentation elements

ACO_REL.2.1C

The reliance information shall describe the functionality of the base component hardware, firmware
and/or software that is relied upon by the dependent component TSF.

ACO_REL.2.2C

The reliance information shall describe all interactions through which the dependent component TSF
requests services from the base component.

ACO_REL.2.3C

The reliance information shall describe each interaction in terms of the interface used and the
return values from those interfaces.

ACO_REL.2.4C

The reliance information shall describe how the dependent TSF protects itself from interference and
tampering by the base component.

Evaluator action elements
ACO_REL.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

15.5 Composed TOE testing (ACO_CTT)
15.5.1 Objectives

This family requires that testing of composed TOE and testing of the base component, as used in the
composed TOE, is performed.

15.5.2 Component levelling
The components in this family are levelled on the basis of increasing rigour of interface testing and

increasing rigour of the analysis of the sufficiency of the tests to demonstrate that the composed TSF
operates in accordance with the reliance information and the composed TOE SFRs.

15.5.3 Application notes

There are two distinct aspects of testing associated with this family:

© ISO/IEC 2020 - All rights reserved 147



ISO/IEC DIS 15408-3:2020(E)

a) testing of the interfaces between the base component and the dependent component, which the
dependent component reliesy upon for enforcement of security functionality, to demonstrate their
compatibility;

b) testing of the composed TOE to demonstrate that the TOE behaves in accordance with the SFRs for
the composed TOE.

If the test configurations used during evaluation of the dependent component included use of the base
component as a “platform” and the test analysis sufficiently demonstrates that the TSF behaves in
accordance with the SFRs, the developer need perform no further testing of the composed TOE
functionality. However, if the base component was not used in the testing of the dependent
component, or the configuration of either component varied, then the developer is to perform testing
of the composed TOE. This may take the form of repeating the dependent component developer
testing of the dependent component, provided this adequately demonstrates the composed TOE TSF
behaves in accordance with the SFRs.

The developer is to provide evidence of testing the base component interfaces used in the
composition. The operation of base component TSFIs would have been tested as part of the ATE: Tests
activities during evaluation of the base component. Therefore, provided the appropriate interfaces
were included within the test sample of the base component evaluation and it was determined in
Composition rationale (ACO_COR) that the base component is operating in accordance with the base
component evaluated configuration, with all security functionality required by the dependent
component included in the TSF, the evaluator action ACO_CTT.1.1E may be met through reuse of the
base component ATE: Tests verdicts.

If this is not the case, the base component interfaces used relevant to the composition that are affected
by any variations to the evaluated configuration and any additional security functionally will be tested
to ensure they demonstrate the expected behaviour. The expected behaviour to be tested is that
described in the reliance information (Reliance of dependent component (ACO_REL) evidence).

15.5.4 ACO_CTT.1 Interface testing

Dependencies: ACO_REL.1 Basic reliance information

ACO_DEV.1 Functional Description
Objectives

The objective of this component is to ensure that each interface of the base component, on which the
dependent component relies, is tested.

Developer action elements

ACO_CTT.1.1D

The developer shall provide composed TOE test documentation.
ACO_CTT.1.2D

The developer shall provide base component interface test documentation.
ACO_CTT.1.3D

The developer shall provide the composed TOE for testing.

ACO_CTT.1.4D

The developer shall provide an equivalent set of resources to those that were used in the base
component developer’s functional testing of the base component.

Content and presentation elements

© ISO/IEC 2020 - All rights reserved 148



ISO/IEC DIS 15408-3:2020(E)

ACO_CTT.1.1C

The composed TOE and base component interface test documentation shall consist of test
plans, expected test results and actual test results.

ACO_CTT.1.2C

The test documentation from the developer execution of the composed TOE tests shall
demonstrate that the TSF behaves as specified.

ACO_CTT.1.3C

The test documentation from the developer execution of the base component interface tests
shall demonstrate that the base component interface relied upon by the dependent component
behaves as specified.

ACO_CTT.1.4C

The base component shall be suitable for testing.
Evaluator action elements

ACO_CTT.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ACO_CTT.1.2E

The evaluator shall execute a sample of test in the test documentation to verify the developer
test results.

ACO_CTT.1.3E

The evaluator shall test a subset of the TSF interfaces of the composed TOE to confirm that the
composed TSF operates as specified.

15.5.5 ACO_CTT.2 Rigorous interface testing

Dependencies: ACO_REL.2 Reliance information

ACO_DEV.2 Basic evidence of design
Objectives

The objective of this component is to ensure that each interface of the base component, on which the
dependent component relies, is tested.

Developer action elements

ACO_CTT.2.1D

The developer shall provide composed TOE test documentation.
ACO_CTT.2.2D

The developer shall provide base component interface test documentation.
ACO_CTT.2.3D

The developer shall provide the composed TOE for testing.

ACO_CTT.2.4D

The developer shall provide an equivalent set of resources to those that were used in the base
component developer's functional testing of the base component.

Content and presentation elements

© ISO/IEC 2020 - All rights reserved 149



ISO/IEC DIS 15408-3:2020(E)

ACO_CTT.2.1C

The composed TOE and base component interface test documentation shall consist of test plans,
expected test results and actual test results.

ACO_CTT.2.2C

The test documentation from the developer execution of the composed TOE tests shall demonstrate
that the TSF behaves as specified and is complete.

ACO_CTT.2.3C

The test documentation from the developer execution of the base component interface tests shall
demonstrate that the base component interface relied upon by the dependent component behaves as
specified and is complete.

ACO_CTT.2.4C

The base component shall be suitable for testing.
Evaluator action elements

ACO_CTT.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ACO_CTT.2.2E

The evaluator shall execute a sample of test in the test documentation to verify the developer test
results.

ACO_CTT.2.3E

The evaluator shall test a subset of the TSF interfaces of the composed TOE to confirm that the
composed TSF operates as specified.

15.6 Composition vulnerability analysis (ACO_VUL)

15.6.1 Objectives

This family calls for an analysis of vulnerability information available in the public domain and of
vulnerabilities that may be introduced as a result of the composition.

15.6.2 Component levelling

The components in this family are levelled on the basis of increasing scrutiny of vulnerability
information from the public domain and independent vulnerability analysis.

15.6.3 Application notes

The developer will provide details of any residual vulnerabilities reported during evaluation of the
components. These may be gained from the component developers or evaluation reports for the
components. These will be used as inputs into the evaluator's vulnerability analysis of the composed
TOE in the operational environment.

The operational environment of the composed TOE is examined to ensure that the assumptions and
objectives for the component operational environment (specified in each component ST) are satisfied
in the composed TOE. An initial analysis of the consistency of assumptions and objectives between the
components and the composed TOE STs will have been performed during the conduct of the ASE
activities for the composed TOE. However, this analysis is revisited with the knowledge acquired
during the ACO_REL, ACO_DEV and the ACO_COR activities to ensure that, for example, assumptions of
the dependent component that were addressed by the environment in the dependent component ST

© ISO/IEC 2020 - All rights reserved 150



ISO/IEC DIS 15408-3:2020(E)

are not reintroduced as a result of composition (i.e. that the base component adequately addresses the
assumptions of the dependent component ST in the composed TOE).

A search by the evaluator for issues in each component will identify potential vulnerabilities reported
in the public domain since completion of the evaluation of the components. Any potential
vulnerabilities will then be subject to testing.

If the base component used in the composed TOE has been the subject of assurance continuity
activities since certification, the evaluator will consider during the composed TOE vulnerability
analysis activities the changes made in base component.

15.6.4 ACO_VUL.1 Composition vulnerability review

Dependencies: ACO_DEV.1 Functional Description

Developer action elements

ACO_VUL.1.1D

The developer shall provide the composed TOE for testing.
Content and presentation elements

ACO_VUL.1.1C

The composed TOE shall be suitable for testing.

Evaluator action elements

ACO_VUL.1.1E

The evaluator shall confirm that the information provided meets all requirements for content
and presentation of evidence.

ACO_VUL.1.2E

The evaluator shall perform an analysis to determine that any residual vulnerabilities
identified for the base and dependent components are not exploitable in the composed TOE in
its operational environment.

ACO_VUL.1.3E

The evaluator shall perform a search of public domain sources to identify possible
vulnerabilities arising from use of the base and dependent components in the composed TOE
operational environment.

ACO_VUL.1.4E

The evaluator shall conduct penetration testing, based on the identified vulnerabilities, to
demonstrate that the composed TOE is resistant to attacks by an attacker with basic attack
potential.

15.6.5 ACO_VUL.2 Composition vulnerability analysis

Dependencies: ACO_DEV.2 Basic evidence of design
Developer action elements

ACO_VUL.2.1D

The developer shall provide the composed TOE for testing.
Content and presentation elements

ACO_VUL.2.1C

© ISO/IEC 2020 - All rights reserved 151



ISO/IEC DIS 15408-3:2020(E)

The composed TOE shall be suitable for testing.
Evaluator action elements
ACO_VUL.2.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ACO_VUL.2.2E

The evaluator shall perform an analysis to determine that any residual vulnerabilities identified for
the base and dependent components are not exploitable in the composed TOE in its operational
environment.

ACO_VUL.2.3E

The evaluator shall perform a search of public domain sources to identify possible vulnerabilities
arising from use of the base and dependent components in the composed TOE operational
environment.

ACO_VUL.2.4E

The evaluator shall perform an independent vulnerability analysis of the composed TOE, using
the guidance documentation, reliance information and composition rationale to identify
potential vulnerabilities in the composed TOE.

ACO_VUL.2.5E

The evaluator shall conduct penetration testing, based on the identified vulnerabilities, to demonstrate
that the composed TOE is resistant to attacks by an attacker with basic attack potential.

15.6.6 ACO_VUL.3 Enhanced-Basic Composition vulnerability analysis

Dependencies: ACO_DEV.3 Detailed evidence of design
Developer action elements

ACO_VUL.3.1D

The developer shall provide the composed TOE for testing.
Content and presentation elements

ACO_VUL.3.1C

The composed TOE shall be suitable for testing.

Evaluator action elements

ACO_VUL.3.1E

The evaluator shall confirm that the information provided meets all requirements for content and
presentation of evidence.

ACO_VUL.3.2E

The evaluator shall perform an analysis to determine that any residual vulnerabilities identified for
the base and dependent components are not exploitable in the composed TOE in its operational
environment.

ACO_VUL.3.3E

The evaluator shall perform a search of public domain sources to identify possible vulnerabilities
arising from use of the base and dependent components in the composed TOE operational
environment.

© ISO/IEC 2020 - All rights reserved 152



ISO/IEC DIS 15408-3:2020(E)

ACO_VUL.3.4E

The evaluator shall perform an independent vulnerability analysis of the composed TOE, using the
guidance documentation, reliance information and composition rationale to identify potential
vulnerabilities in the composed TOE.

ACO_VUL.3.5E

The evaluator shall conduct penetration testing, based on the identified vulnerabilities, to demonstrate
that the composed TOE is resistant to attacks by an attacker with Enhanced-Basic attack potential.

© ISO/IEC 2020 - All rights reserved 153



ISO/IEC DIS 15408-3:2020(E)

Annex A
(informative)

Development (ADV)

This annex contains ancillary material to further explain and provide additional examples for the
topics brought up in families of the ADV: Development class.

A.1 ADV_ARC: Supplementary material on security architectures

A security architecture is a set of properties that the TSF exhibits; these properties include self-
protection, domain separation, and non-bypassability. Having these properties provides a basis of
confidence that the TSF is providing its security services. This annex provides additional material on
these properties, as well as discussion on contents of a security architecture description.

The remainder of this clause first explains these properties, then discusses the kinds of information
that are needed to describe how the TSF exhibits those properties.

A.1.1 Security architecture properties

Self-protection refers to the ability of the TSF to protect itself from manipulation from external entities
that may result in changes to the TSF. Without these properties, the TSF might be disabled from
performing its security services.

[t is oftentimes the case that a TOE uses services or resources supplied by other IT entities in order to
perform its functions (e.g. an application that relies upon its underlying operating system). In these
cases, the TSF does not protect itself entirely on its own, because it depends on the other IT entities to
protect the services it uses.

Domain separation is a property whereby the TSF creates separate security domains for each untrusted
active entity to operate on its resources, and then keeps those domains separated from one another so
that no entity can run in the domain of any other. For example, an operating system TOE supplies a
domain (address space, per-process environment variables) for each process associated with
untrusted entities.

For some TOEs such domains do not exist because all of the actions of the untrusted entities are
brokered by the TSF. A packet-filter firewall is an example of such a TOE, where there are no untrusted
entity domains; there are only data structures maintained by the TSF. The existence of domains, then,
is dependant upon 1) the type of TOE and 2) the SFRs levied on the TOE. In the cases where the TOE
does provide domains for untrusted entities, this family requires that those domains are isolated from
one another such that untrusted entities in one domain are prevented from tampering (affecting
without brokering by the TSF) from another untrusted entity's domain.

Non-bypassability is a property that the security functionality of the TSF (as specified by the SFRs) is
always invoked and cannot be circumvented when appropriate for that specific mechanism. For
example, if access control to files is specified as a capability of the TSF via an SFR, there must be no
interfaces through which files can be accessed without invoking the TSF's access control mechanism
(an interface through which a raw disk access takes place might be an example of such an interface).

As is the case with self-protection, the very nature of some TOEs might depend upon their
environments to play a role in non-bypassability of the TSF. For example, a security application TOE
requires that it be invoked by the underlying operating system. Similarly, a firewall depends upon the
fact that there are no direct connections between the internal and external networks and that all traffic
between them must go through the firewall.

© ISO/IEC 2020 - All rights reserved 154



ISO/IEC DIS 15408-3:2020(E)

A.1.2 Security architecture descriptions

The security architecture description explains how the properties described above are exhibited by
the TSF. It describes how domains are defined and how the TSF keeps them separate. It describes what
prevents untrusted processes from getting to the TSF and modifying it. It describes what ensures that
all resources under the TSF's control are adequately protected and that all actions related to the SFRs
are mediated by the TSF. It explains any role the environment plays in any of these (e.g. presuming it
gets correctly invoked by its underlying environment, how are its security functions invoked?).

The security architecture description presents the TSF's properties of self-protection, domain
separation, and non-bypassability in terms of the decomposition descriptions. The level of this
description is commensurate with the TSF description required by the ADV_FSP, ADV_TDS and
ADV_IMP requirements that are being claimed. For example, if ADV_FSP is the only TSF description
available, it would be difficult to provide any meaningful security architecture description because
none of the details of any internal workings of the TSF would be available.

However, if the TOE design were also available, even at the most basic level (ADV_TDS.1), there would
be some information available concerning the subsystems that make up the TSF, and there would be a
description of how they work to implement self-protection, domain separation, and non-bypassability.
For example, perhaps all user interaction with the TOE is constrained through a process that acts on
that user's behalf, adopting all of the user's security attributes; the security architecture description
would describe how such a process comes into being, how the process's behaviour is constrained by
the TSF (so it cannot corrupt the TSF), how all actions of that process are mediated by the TSF
(thereby explaining why the TSF cannot be bypassed), etc.

If the available TOE design is more detailed (e.g. at the modular level), or the implementation
representation is also available, then the security architecture description would be correspondingly
more detailed, explaining how the user's process communicate with the TSF processes, how different
requests are processed by the TSF, what parameters are passed, what programmatic protections
(buffer overflow prevention, parameter bounds checking, time of check/time of use checking, etc.) are
in place. Similarly, a TOE whose ST claimed the ADV_IMP component would go into implementation-
specific detail.

The explanations provided in the security architecture description are expected to be of sufficient
detail that one would be able to test their accuracy. That is, simple assertions (e.g. “The TSF keeps
domains separate”) provide no useful information to convince the reader that the TSF does indeed
create and separate domains.

A.1.2.1 Domain Separation

In cases where the TOE exhibits domain separation entirely on its own, there would be a
straightforward description of how this is attained. The security architecture description would
explain the different kinds of domains that are defined by the TSF, how they are defined (i.e. what
resources are allocated to each domain), how no resources are left unprotected, and how the domains
are kept separated so that active entities in one domain cannot tamper with resources in another
domain.

For cases where the TOE depends upon other IT entities to play a role in domain separation, that
sharing of roles must be made clear. For example, a TOE that is solely application software relies upon
the underlying operating system to correctly instantiate the domains that the TOE defines; if the TOE
defines separate processing space, memory space, etc, for each domain, it depends upon the
underlying operating system to operate correctly and benignly (e.g. allow the process to execute only
in the execution space that is requested by the TOE software).

For example, mechanisms that implement domain separation (e.g. memory management, protected
processing modes provided by the hardware, etc.) would be identified and described. Or, the TSF

© ISO/IEC 2020 - All rights reserved 155



ISO/IEC DIS 15408-3:2020(E)

might implement software protection constructs or coding conventions that contribute to
implementing separation of software domains, perhaps by delineating user address space from system
address space.

The vulnerability analysis and testing (see AVA_VAN) activities will likely include attempts to defeat
the described TSF domain separation through the use of monitoring or direct attack the TSF.

A.1.2.2 TSF Self-protection

In cases where the TOE exhibits self-protection entirely on its own, there would be a straightforward
description of how this self-protection is attained. Mechanisms that provide domain separation to
define a TSF domain that is protected from other (user) domains would be identified and described.

For cases where the TOE depends upon other IT entities to play a role in protecting itself, that sharing
of roles must be made clear. For example, a TOE that is solely application software relies upon the
underlying operating system to operate correctly and benignly; the application cannot protect itself
against a malicious operating system that subverts it (for example, by overwriting its executable code
or TSF data).

The security architecture description also covers how user input is handled by the TSF in such a way
that the TSF does not subject itself to being corrupted by that user input. For example, the TSF might
implement the notion of privilege and protect itself by using privileged-mode routines to handle user
data. The TSF might make use of processor-based separation mechanisms (e.g. privilege levels or
rings) to separate TSF code and data from user code and data. The TSF might implement software
protection constructs or coding conventions that contribute to implementing separation of software,
perhaps by delineating user address space from system address space.

For TOEs that start up in a low-function mode (for example, a single-user mode accessible only to
installers or administrators) and then transition to the evaluated secure configuration (a mode
whereby untrusted users are able to login and use the services and resources of the TOE), the security
architecture description also includes an explanation of how the TSF is protected against this
initialisation code that does not run in the evaluated configuration. For such TOEs, the security
architecture description would explain what prevents those services that should be available only
during initialisation (e.g. direct access to resources) from being accessible in the evaluated
configuration. It would also explain what prevents initialisation code from running while the TOE is in
the evaluated configuration.

There must also be an explanation of how the trusted initialisation code will maintain the integrity of
the TSF (and of its initialisation process) such that the initialisation process is able to detect any
modification that would result in the TSF being spoofed into believe it was in an initial secure state.

The vulnerability analysis and testing (see AVA_VAN) activities will likely include attempts to defeat
the described TSF self--protection through the use of tampering, direct attack, or monitoring of the
TSF.

A.1.2.3 TSF Non-Bypassability

The property of non-bypassability is concerned with interfaces that permit the bypass of the
enforcement mechanisms. In most cases this is a consequence of the implementation, where if a
programmer is writing an interface that accesses or manipulates an object, it is that programmer's
responsibility to use interfaces that are part of the SFR enforcement mechanism for the object and not
to try to circumvent those interfaces. For the description pertaining to non-bypassability, then, there
are two broad areas that have to be covered.

The first consists of those interfaces to the SFR-enforcement. The property for these interfaces is that
they contain no operations or modes that allow them to be used to bypass the TSF. It is likely that the
evidence for ADV_FSP and ADV_TDS can be used in large part to make this determination. Because
non-bypassability is the concern, if only certain operations available through these TSFIs are

© ISO/IEC 2020 - All rights reserved 156



ISO/IEC DIS 15408-3:2020(E)

documented (because they are SFR-enforcing) and others are not, the developer should consider
whether additional information (to that presented in ADV_FSP and ADV_TDS) is necessary to make a
determination that the SFR-supporting and SFR-non-interfering operations of the TSFI do not afford
an untrusted entity the ability to bypass the policy being enforced. If such information is necessary, it
is included in the security architecture description.

The second area of non-bypassability is concerned with those interfaces whose interactions are not
associated with SFR-enforcement. Depending on the ADV_FSP and ADV_TDS components claimed,
some information about these interfaces may or may not exist in the functional specification and TOE
design documentation. The information presented for such interfaces (or groups of interfaces) should
be sufficient so that a reader can make a determination (at the level of detail commensurate with the
rest of the evidence supplied in the ADV: Development class) that the enforcement mechanisms cannot
be bypassed.

The property that the security functionality cannot be bypassed applies to all security functionality
equally. That is, the design description should cover objects that are protected under the SFRs (e.g.
FDP_* components) and functionality (e.g. audit) that is provided by the TSF. The description should
also identify the interfaces that are associated with security functionality; this might make use of the
information in the functional specification. This description should also describe any design
constructs, such as object managers, and their method of use. For instance, if routines are to use a
standard macro to produce an audit record, this convention is a part of the design that contributes to
the non-bypassability of the audit mechanism. It is important to note that non-bypassability in this
context is not an attempt to answer the question “could a part of the TSF implementation, if malicious,
bypass the security functionality”, but rather to document how the implementation does not bypass
the security functionality.

The vulnerability analysis and testing (see AVA_VAN) activities will likely include attempts to defeat
the described non-bypassability by circumventing the TSF.

A.2 ADV_FSP: Supplementary material on functional specification

The purpose in specifying the TSFIs is to provide the necessary information to conduct testing;
without knowing the possible means interact with the TSF, one cannot adequately test the behaviour
of the TSF.

There are two parts to specifying the TSFIs: identifying them and describing them. Because of the
diversity of possible TOEs, and of different TSFs therein, there is no standard set of interfaces that
constitute “TSFIs”. This annex provides guidance on the factors that determine which interfaces are
TSFIs.

A.2.1 Non-TSF part of the TOE
The TSF comprises all parts of the TOE the user has to rely on in order to trust the security
functionality.

To say it in other words: Those parts of the TOE that do not belong to the TSF can be modified by an
attacker without any impact on the TOE security functionality. If this isn’t the case, these parts of the
TOE have to be included in the TSF.

If the TSF and the TSF implementation are defined then it is clear whether there exist further parts of
the TOE which can be classified as non-TSF parts of the TOE. Such parts do not have to be part of the
TSF but they are still part of the TOE.

The relationship between TSF and non-TSF parts of TOE is given by their definitions and the ARC
properties as follows:

— non-TSF parts do not bypass the TSF and

© ISO/IEC 2020 - All rights reserved 157



ISO/IEC DIS 15408-3:2020(E)

— parts of the TSF protects themselves against tampering.

A subsystem of the TOE which is not part of the TSF has to fulfil the following condition (described as a
rule of thumbl2): The subsystem must not have any security impact of the TOE even if it were
substituted by an attacker.

Therefore, between the Non-TSF parts and the TSF parts it seems that some kind of “separation
mechanism” is advisable!3 because such “separation mechanism” may build the basis for the
assessment that there is no impact on the TSF parts from the Non-TSF parts possible.

Such “separation mechanism” could be implemented by the security architecture or by an explicitly
realized part of the implementation (e.g. a firewall between TSF and Non-TSF parts of the TOE).

The analysis of the “separation mechanism” is then subject of the vulnerability assessment because it
must withstand attacks by an attacker of the respective strength according to the VAN level of the
evaluation.

The developer shall provide evidence for non-bypassability and self-protection in its security
architecture description and the evaluator shall analyse this evidence in subactivity for ADV_ARC.1
and assess the effectiveness in the vulnerability assessment.

The goal of TOE design documentation is to provide sufficient information to determine the TSF
boundary, and to describe how the TSF implements the SFR. Further attention is needed by the fact
that the family ADV_TDS requires only identification of the non-TSF subsystems of the TOE. No
interface description is provided for these subsystems in ADV_FSP or ADV_TDS. SFR non-interference
of these subsystems is assumed but not demonstrated by the developer and not examined in details by
the evaluator. However, from the TOE design point of view this is not that important as long as the
above mentioned separation mechanism is in place and the vulnerability assessment confirms that it is
strong enough. Therefore this “separation mechanism” implements the TSF or enforces ARC
properties as security feature. But non-bypassability may be enforced by “pure architecture
properties” as well.

Parts of the TOE classified as non-TSF must not provide means to bypass the TSF (no matter whether a
valid user or even an attacker makes uses of those parts) and must not contribute to the TSF. It is
important that the developer provides clear evidence and demonstrate how this requirement is
fulfilled.

Therefore, the developer shall demonstrate and the evaluator shall examine that the TOE identification
of subsystems as non-TSF (cf. ADV_TDS.x.1) is correct and consequently no detailed description of
these subsystems is necessary. The evaluator examination shall include the ARC properties non-
bypassability and self-protection being described in the ADV_ARC documentation provided by the
developer (see the paragraphs above).

A.2.2 Determining the TSFI

In order to identify the interfaces to the TSF, the parts of the TOE that make up the TSF must first be
identified. This identification is actually a part of the TOE design (ADV_TDS) analysis, but is also
performed implicitly (through identification and description of the TSFI) by the developer in cases
where TOE design (ADV_TDS) is not included in the assurance package. In this analysis, a portion of

12 This rule is only valid to some extent because the actual requirement "The Non-TSF part must not bypass the TSF." is not
that strong as the given rule of thumb.

13 The “separation mechanism” is only an proposal here. The developer is free to provide evidence using other kind of
security implementation as long as the requirement showing the non-bypassablity for the TSF part of the TOE from the non-
TSF part of the TOE is fulfilled.

© ISO/IEC 2020 - All rights reserved 158



ISO/IEC DIS 15408-3:2020(E)

the TOE must be considered to be in the TSF if it contributes to the satisfaction of an SFR in the ST (in
whole or in part). This includes, for example, everything in the TOE that contributes to TSF run-time
initialisation, such as software that runs prior to the TSF being able to protect itself because
enforcement of the SFRs has not yet begun (e.g. while booting up). Also included in the TSF are all
parts of the TOE that contribute to the architectural principles of TSF self-protection, domain
separation, and non-bypassability (see Security Architecture (ADV_ARC)).

Once the TSF has been defined, the TSFI are identified. The TSFI consists of all means by which
external entities (or subjects in the TOE but outside of the TSF) supply data to the TSF, receive data
from the TSF and invoke services from the TSF. These service invocations and responses are the
means of crossing the TSF boundary. While many of these are readily apparent, others might not be as
obvious. The question that should be asked when determining the TSFIs is: “How can a potential
attacker interact with the TSF in an attempt to subvert the SFRs?”

Therefore, from the evaluation point of view it is also important whether the interface can be misused
by an attacker to get access to the security functionality in order to compromise the assets protected
by TSF.

Any interface of the TSF which can be potentially used by an attacker belongs to the TSFI (regardless
of the further classification as SFR-enforcing, SFR-supporting or SFR-non-interfering).

It is not important whether the TSF will be accessed from outside or whether the TSF accesses the
external resources (e.g. TSF calls platform or user). The only criteria is whether there is a potential
interference with the TSF from outside.

The following discussions illustrate the application of the TSFI definition in different contexts.

A.2.2.1 Electrical interfaces

In TOEs such as smart cards, where the adversary has not only logical access to the TOE, but also
complete physical access to the TOE, the TSF boundary is the physical boundary. Therefore, the
exposed electrical interfaces are considered TSFI because their manipulation could affect the
behaviour of the TSF. As such, all these interfaces (electrical contacts) need to be described: various
voltages that might be applied, etc.

A.2.2.2 Network protocol stack

The TSFIs of a TOE that performs protocol processing would be those protocol layers to which a
potential attacker has direct access. This need not be the entire protocol stack, but it might be.

For example, if the TOE were some sort of a network appliance that allowed potential attackers to
affect every level of the protocol stack (i.e. to send arbitrary signals, arbitrary voltages, arbitrary
packets, arbitrary datagrams, etc.), then the TSF boundary exists at each layer of the stack. Therefore,
the functional specification would have to address every protocol at every layer of the stack.

If, however, the TOE were-was a firewall that protects an internal network from the Internet, a
potential attacker would have no means of directly manipulating the voltages that enter the TOE; any
extreme voltages would simply not be passed theughthrough the Internet. That is, the attacker would
have access only to those protocols at the Internet layer or above. The TSF boundary exists at each
layer of the stack. Therefore, the functional specification would have to address only those protocols at
or above the Internet layer: it would describe each of the different communication layers at which the
firewall is exposed in terms of what constitutes well-formed input for what might appear on the line,
and the result of both well-formed and malformed inputs. For example, the description of the Internet
protocol layer would describe what constitutes a well-formed IP packet and what happens when both
correctly-formed and malformed packets are received. Likewise, the description of the TCP layer
would describe a successful TCP connection and what happens both when successful connections are
established and when connections cannot be established or are inadvertently dropped. Presuming the
firewall's purpose is to filter application-level commands (like FTP or telnet), the description of the

© ISO/IEC 2020 - All rights reserved 159



ISO/IEC DIS 15408-3:2020(E)

application layer would describe the application-level commands that are recognized and filtered by
the firewall, as well as the results of encountering unknown commands.

The descriptions of these layers would likely reference published communication standards (telnet,
FTP, TCP, etc.) that are used, noting which user-defined options are chosen.

A.2.2.3 Wrappers

>
=
=3
a .
2,
S
=

wrappers ‘
L A2 AAAA4 4444422

VYV VVYVVYVVYVVYVYYVYYY

Kernel (TSF)

Figure A.1 — Wrappers

“Wrappers” translate complex series of interactions into simplified common services, such as when
Operating Systems create APIs for use by applications (as shown in Figure A.1). Whether the TSFIs
would be the system calls or the APIs depends upon what is available to the application: if the
application can use the system calls directly, then the system calls are the TSFIs. If, however, there
were something that prohibits their direct use and requires all communication through the APIs, then
the APIs would be the TSFIs.

A Graphical User interface is similar: it translates between machine-understandable commands and
user-friendly graphics. Similarly, the TSFIs would be the commands if users have access to them, or the
graphics (pull-down menus, check-boxes, text fields) if the users are constrained to using them.

It is worth noting that, in both of these examples, if the user is prohibited from using the more
primitive interfaces (i.e. the system calls or the commands), the description of this restriction and of
its enforcement would be included in the Security Architecture Description (see A.1). Also, the
wrapper would be part of the TSF.

A.2.2.4 Inaccessible interfaces
For a given TOE, not all of the interfaces may be accessible. That is, the security objectives for the
operational environment (in the Security Target) may prevent access to these interfaces or limit

access in such a way that they are practically inaccessible. Such interfaces would not be considered
TSFIs. Some examples:

© ISO/IEC 2020 - All rights reserved 160



b)

ISO/IEC DIS 15408-3:2020(E)

If the security objectives for the operational environment for the stand-alone firewall state that
“the firewall will be operational in a server room environment to which only trusted and trained
personnel will have access, and which will be equipped with an interruptible power supply
(against power failure)”, physical and power interfaces will not be accessible, since trusted and
trained personnel will not attempt to dismantle the firewall and/or disable its power supply.

If the security objectives for the operational environment for the software firewall (application)
state that “the OS and the hardware will provide a security domain for the application free from
tampering by other programs”, the interfaces through which the firewall can be accessed by other
applications on the OS (e.g. deleting or modifying the firewall executable, direct reading or writing
to the memory space of the firewall) will not be accessible, since the 0S/hardware part of the
operational environment makes this interface inaccessible.

If the security objectives for the operational environment for the software firewall additionally
state that the OS and hardware will faithfully execute the commands of the TOE, and will not
tamper with the TOE in any manner, interfaces through which the firewall obtains primitive
functionality from the OS and hardware (executing machine code instructions, OS APIs, such as
creating, reading, writing or deleting files, graphical APIs etc.) will not be accessible, since the
0S/hardware are the only entities that can access that interface, and they are completely trusted.

For all of these examples, these inaccessible interfaces would not be TSFIs.

A.2.3 Example: A complex DBMS

Figure A.2 illustrates a complex TOE: a database management system that relies on hardware and
software that is outside the TOE boundary (referred to as the IT environment in the rest of this
discussion). To simplify this example, the TOE is identical to the TSF. The shaded boxes represent the
TSF, while the unshaded boxes represent IT entities in the environment. The TSF comprises the
database engine and management GUIs (represented by the box labelled DB) and a kernel module that
runs as part of the OS that performs some security function (represented by the box labelled PLG). The
TSF kernel module has entry points defined by the OS specification that the OS will call to invoke some
function (this could be a device driver, or an authentication module, etc.). The key is that this
pluggable kernel module is providing security services specified by functional requirements in the ST.

-
| Yy~
) B2
i : A2
SRV |
- JUL - | OS
| 3 i B3
| > > —/
l PLG
|
=TSF b - — - — — — — — — >

=IT Environment

Figure A.2 — Interfaces in a DBMS system

© ISO/IEC 2020 - All rights reserved 161



ISO/IEC DIS 15408-3:2020(E)

The IT environment consists of the operating system itself (represented by the box labelled 0S), as
well as an external server (labelled SRV). This external server, like the OS, provides a service that the
TSF depends on, and thus needs to be in the IT environment. Interfaces in the figure are labelled Ax for
TSFI, and Bx for other interfaces that would be documented in ACO: Composition. Each of these groups
of interfaces is now discussed.

Interface group Al represents the most obvious set of TSFIL. These are interfaces used by users to
directly access the database and its security functionality and resources.

Interface group A2 represent the TSFI that the OS invokes to obtain the functionality provided by the
pluggable module. These are contrasted with interface group B3, which represent calls that the
pluggable module makes to obtain services from the IT environment.

Interface group A3 represent TSFI that pass through the IT environment. In this case, the DBMS
communicates over the network using a proprietary application-level protocol. While the IT
environment is responsible for providing various supporting protocols (e.g. Ethernet, IP, TCP), the
application layer protocol that is used to obtain services from the DBMS is a TSFI and must be
documented as such. The dotted line indicates return values/services from the TSF over the network
connection.

The interfaces labelled Bx represent interfaces to functionality in the IT eEnvironment. These
interfaces are not TSFI and need only be discussed and analysed when the TOE is being used in a
composite evaluation as part of the activities associated with the ACO class.

A.2.4 Example Functional Specification

The eExample firewall is used between an internal network and an external network. It verifies the
source address of data received (to ensure that external data are not attempting to masquerade as
originating from the internal data); if it detects any such attempts, it saves the offending attempt to the
audit log. The administrator connects to the firewall by establishing a telnet connection to the firewall

from the internal network. Administrator actions consist of authenticating, changing passwords,
reviewing the audit log, and setting or changing the addresses of the internal and external networks.

The Example firewall presents the following interfaces to the internal network:

a) I[P datagrams
b) Administrator Commands

and the following interfaces to the external network:

a) I[P datagrams

Interfaces Descriptions: IP Datagrams
The datagrams are in the format specified by RFC 791.

— Purpose - to transmit blocks of data (“datagrams”) from source hosts to destination hosts
identified by fixed length addresses; also provides for fragmentation and reassembly of long
datagrams, if necessary, for transmission through small-packet networks.

— Method of Use - they arrive from the lower-level (e.g. data link) protocol.

— Parameters - the following fields of the IP datagram header: source address, destination address,
don't-fragment flag.

— Parameter description - [As defined by RFC 791, subclause 3.1 (“Internet Header Format”)]

© ISO/IEC 2020 - All rights reserved 162



ISO/IEC DIS 15408-3:2020(E)

— Actions - Transmits datagrams that are not masquerading; fragments large datagrams if

necessary; reassembles fragments into datagrams.

— Error messages - (none). No reliability guaranteed (reliability to be provided by upper-level

Interfaces Descriptions: Administrator Commands

protocols) Undeliverable datagrams (e.g. must be fragmented for transmission, but don't-
fragment flag is set) dropped.

The administrator commands provide a means for the administrator to interact with the firewall.
These commands and responses ride atop a telnet (RFC 854) connection established from any
host on the internal network. Available commands are:

Passwd

Purpose - sets administrator password
Method of Use - Passwd < password >
Parameters - password

Parameter description - value of new password

Actions - changes password to new value supplied. There are no restrictions.

Error messages - none.

Readaudit

Purpose - presents the audit log to the administrator
Method of Use - Readaudit

Parameters - none

Parameter description - none

Actions - provides the text of the audit log

Error messages - none.

Setintaddr

Purpose - sets the address of the internal address.
Method of Use - Setintaddr < address >

Parameters - address

Parameter description - first three fields of an IP address (as defined in RFC 791). For

example: 123.123.123.

Actions - changes the internal value of the variable defining the internal network, the value of

which is used to judge attempted masquerades.

© ISO/IEC 2020 - All rights reserved

163



ISO/IEC DIS 15408-3:2020(E)

— Error messages - “address in use”: indicates the identified internal network is the same as the
external network.

— Setextaddr
— Purpose - sets the address of the external address
— Method of Use - Setextaddr < address >
— Parameters - address

— Parameter description - first three fields of an IP address (as defined in RFC 791). For
example: 123.123.123.

— Actions - changes the internal value of the variable defining the external network.

— Error messages - “address in use”: indicates the identified external network is the same as the
internal network.

A.3 ADV_INT: Supplementary material on TSF internals

The wide variety of TOEs makes it impossible to codify anything more specific than “well-structured”
or “minimum complexity”. Judgements on structure and complexity are expected to be derived from
the specific technologies used in the TOE. For example, software is likely to be considered well-
structured if it exhibits the characteristics cited in the software engineering disciplines.

This annex provides supplementary material on assessing the structure and complexity of procedure-
based software portions of the TSF. This material is based on information readily available in software
engineering literature. For other kinds of internals (e.g. hardware, non-procedural software such as
object-oriented code, etc.), corresponding literature on good practises should be consulted.

A.3.1 Structure of procedural software

The structure of procedural software is traditionally assessed according to its modularity. Software
written with a modular design aids in achieving understandability by clarifying what dependencies a
module has on other modules (coupling) and by including in a module only tasks that are strongly
related to each other (cohesion). The use of modular design reduces the interdependence between
elements of the TSF and thus reduces the risk that a change or error in one module will have effects
throughout the TOE. Its use enhances clarity of design and provides for increased assurance that
unexpected effects do not occur. Additional desirable properties of modular decomposition are a
reduction in the amount of redundant or unneeded code.

Minimising the amount of functionality in the TSF allows the evaluator as well as the developer to
focus only on that functionality which is necessary for SFR enforcement, contributing further to
understandability and further lowering the likelihood of design or implementation errors.

The incorporation of modular decomposition, layering and minimization into the design and
implementation process must be accompanied by sound software engineering considerations. A
practical, useful software system will usually entail some undesirable coupling among modules, some
modules that include loosely-related functions, and some subtlety or complexity in a module's design.
These deviations from the ideals of modular decomposition are often deemed necessary to achieve
some goal or constraint, be it related to performance, compatibility, future planned functionality, or
some other factors, and may be acceptable, based on the developer's justification for them. In applying
the requirements of this class, due consideration must be given to sound software engineering
principles; however, the overall objective of achieving understandability must be achieved.

© ISO/IEC 2020 - All rights reserved 164



ISO/IEC DIS 15408-3:2020(E)

A.3.1.1 Cohesion

Cohesion is the manner and degree to which the tasks performed by a single software module are
related to one another; types of cohesion include coincidental, communicational, functional, logical,
sequential, and temporal. These types of cohesion are characterized below, listed in the order of
decreasing desirability.

a) functional cohesion - a module with functional cohesion performs activities related to a single
purpose. A functionally cohesive module transforms a single type of input into a single type of
output, such as a stack manager or a queue manager.

b) sequential cohesion - a module with sequential cohesion contains functions each of whose output
is input for the following function in the module. An example of a sequentially cohesive module is
one that contains the functions to write audit records and to maintain a running count of the
accumulated number of audit violations of a specified type.

c) communicational cohesion - a module with communicational cohesion contains functions that
produce output for, or use output from, other functions within the module. An example of a
communicationally cohesive module is an access check module that includes mandatory,
discretionary, and capability checks.

d) temporal cohesion - a module with temporal cohesion contains functions that need to be executed
at about the same time. Examples of temporally cohesive modules include initialisation, recovery,
and shutdown modules.

e) logical (or procedural) cohesion - a module with logical cohesion performs similar activities on
different data structures. A module exhibits logical cohesion if its functions perform related, but
different, operations on different inputs.

f) coincidental cohesion - a module with coincidental cohesion performs unrelated, or loosely
related, activities.

A.3.1.2 Coupling

Coupling is the manner and degree of interdependence between software modules; types of coupling
include call, common and content coupling. These types of coupling are characterized below, listed in
the order of decreasing desirability:

a) call: two modules are call coupled if they communicate strictly through the use of their
documented function calls; examples of call coupling are data, stamp, and control, which are
defined below.

1) data: two modules are data coupled if they communicate strictly through the use of call
parameters that represent single data items.

2) stamp: two modules are stamp coupled if they communicate through the use of call
parameters that comprise multiple fields or that have meaningful internal structures.

3) control: two modules are control coupled if one passes information that is intended to
influence the internal logic of the other.

b) common: two modules are common coupled if they share a common data area or a common

system resource. Global variables indicate that modules using those global variables are common
coupled. Common coupling through global variables is generally allowed, but only to a limited

© ISO/IEC 2020 - All rights reserved 165



ISO/IEC DIS 15408-3:2020(E)

degree. For example, variables that are placed into a global area, but are used by only a single
module, are inappropriately placed, and should be removed. Other factors that need to be
considered in assessing the suitability of global variables are:

1) The number of modules that modify a global variable: In general, only a single module should
be allocated the responsibility for controlling the contents of a global variable, but there may
be situations in which a second module may share that responsibility; in such a case, sufficient
justification must be provided. It is unacceptable for this responsibility to be shared by more
than two modules. (In making this assessment, care should be given to determining the
module actually responsible for the contents of the variable; for example, if a single routine is
used to modify the variable, but that routine simply performs the modification requested by
its caller, it is the calling module that is responsible, and there may be more than one such
module). Further, as part of the complexity determination, if two modules are responsible for
the contents of a global variable, there should be clear indications of how the modifications
are coordinated between them.

2) The number of modules that reference a global variable: Although there is generally no limit
on the number of modules that reference a global variable, cases in which many modules
make such a reference should be examined for validity and necessity.

c) content: two modules are content coupled if one can make direct reference to the internals of the
other (e.g. modifying code of, or referencing labels internal to, the other module). The result is that
some or all of the content of one module are effectively included in the other. Content coupling can
be thought of as using unadvertised module interfaces; this is in contrast to call coupling, which
uses only advertised module interfaces.

A.3.2 Complexity of procedural software

Complexity is the measure of the decision points and logical paths of execution that code takes.
Software engineering literature cites complexity as a negative characteristic of software because it
impedes understanding of the logic and flow of the code. Another impediment to the understanding of
code is the presence of code that is unnecessary, in that it is unused or redundant.

The use of layering to separate levels of abstraction and minimize circular dependencies further
enables a better understanding of the TSF, providing more assurance that the TOE security functional
requirements are accurately and completely instantiated in the implementation.

Reducing complexity also includes reducing or eliminating mutual dependencies, which pertains both
to modules in a single layer and to those in separate layers. Modules that are mutually dependent may
rely on one another to formulate a single result, which could result in a deadlock condition, or worse
yet, a race condition (e.g. time of check vs. time of use concern), where the ultimate conclusion could
be indeterminate and subject to the computing environment at the given instant in time.

Design complexity minimization is a key characteristic of a reference validation mechanism, the
purpose of which is to arrive at a TSF that is easily understood so that it can be completely analysed.
(There are other important characteristics of a reference validation mechanism, such as TSF self-
protection and non-bypassability; these other characteristics are covered by requirements in the
ADV_ARC family.)

A.4 ADV_TDS: Subsystems and Modules

This clause provides additional guidance on the TDS family, and its use of the terms “subsystem” and
“module”. This is followed by a discussion of how, as more-detailed becomes available, the
requirement for the less-detailed is reduced.

© ISO/IEC 2020 - All rights reserved 166



ISO/IEC DIS 15408-3:2020(E)

A.4.1 Subsystems

Figure A.3 shows that, depending on the complexity of the TSF, the design may be described in terms
of subsystems and modules (where subsystems are at a higher level of abstraction than modules); or it
may just be described in terms of one level of abstraction (e.g. subsystems at lower assurance levels,
modules at higher levels). In cases where a lower level of abstraction (modules) is presented,
requirements levied on higher-level abstractions (subsystems) are essentially met by default. This
concept is further elaborated in the discussion on subsystems and modules below.

/Suhsj stems

vy

A,

TOE 1 Modules TOE 2
(complex) (simple)

Figure A.3 — Subsystems and Modules

The developer is expected to describe the design of the TOE in terms of subsystems. The term
“subsystem” was chosen to be specifically vague so that it could refer to units appropriate to the TOE
(e.g. subsystems, modules). subsystems can even be uneven in scope, as long as the requirements for
description of subsystems are met.

The first use of subsystems is to distinguish the TSF boundary; that is, the portions of the TOE that
comprise the TSF. In general, a subsystem is part of the TSF if it has the capability (whether by design
or implementation) to affect the correct operation of any of the SFRs. For example, for software that
depends on different hardware execution modes to provide domain separation (see A.1) where SFR-
enforcing code is executed in one domain, then all subsystems that execute in that domain would be
considered part of the TSF. Likewise, if a server outside that domain implemented an SFR (e.g.
enforced an access control policy over objects it managed), then it too would be considered part of the
TSF.

The second use of subsystems is to provide a structure for describing the TSF at a level of description
that, while describing how the TSF works, does not necessarily contain low-level implementation
detail found in module descriptions (discussed later). subsystems are described at either a high level
(lacking an abundance of implementation detail) or a detailed level (providing more insight into the
implementation). The level of description provided for a subsystem is determined by the degree to
which that subsystem is responsible for implementing an SFR.

An SFR-enforcing subsystem is a subsystem that provides mechanisms for enforcing an element of any
SFR, or directly supports a subsystem that is responsible for enforcing an SFR. If a subsystem provides
(implements) an SFR-enforcing TSFI, then the subsystem is SFR-enforcing.

Subsystems can also be identified as SFR-supporting and SFR-non-interfering. An SFR-supporting
subsystem is one that is depended on by an SFR-enforcing subsystem in order to implement an SFR,
but does not play as direct a role as an SFR-enforcing subsystem. An SFR-non-interfering subsystem is
one that is not depended upon, in either a supporting or enforcing role, to implement an SFR.

© ISO/IEC 2020 - All rights reserved 167



ISO/IEC DIS 15408-3:2020(E)

A.4.2 Modules

A module is generally a relatively small architectural unit that can be characterized in terms of the
properties discussed in TSF internals (ADV_INT). When both ADV_TDS.3 Basic modular design (or
above) requirements and TSF internals (ADV_INT) requirements are present in a PP or ST, a “module”
in terms of the TOE design (ADV_TDS) requirements refers to the same entity as a “module” for the
TSF internals (ADV_INT) requirements. Unlike subsystems, modules describe the implementation in a
level of detail that can serve as a guide to reviewing the implementation representation.

[t is important to note that, depending on the TOE, modules and subsystems may refer to the same
abstraction. For ADV_TDS.1 Basic design and ADV_TDS.2 Architectural design (which do not require
description at the module level) the subsystem description provides the lowest level detail available
about the TSF. For ADV_TDS.3 Basic modular design (which require module descriptions) these
descriptions provide the lowest level of detail, while the subsystem descriptions (if they exist as
separate entities) merely serve to put to the module descriptions in context. That is, it is not necessary
to provide detailed subsystem descriptions if module descriptions exist. In TOEs that are sufficiently
simple, a separate “subsystem description” is not necessary; the requirements can be met through
documentation provided by modules. For complex TOEs, the purpose of the subsystem description
(with respect to the TSF) is to provide the reader context so they can focus their analysis
appropriately. This difference is illustrated in Figure A.3.

An SFR-enforcing module is a module that completely or partially implements a security functional
requirement (SFR) in the ST. Such modules may implement an SFR-enforcing TSFI, but some
functionality expressed in an SFR (for example, audit and object re-use functionality) may not be
directly tied to a single TSFI. As was the case with subsystems, SFR-supporting modules are those
modules that are depended upon by an SFR-enforcing module, but are not responsible for directly
implementing an SFR. SFR-non-interfering modules are those modules that do not deal, directly or
indirectly, with the enforcement of SFRs.

It is important to note that the determination of what “directly implements” means is somewhat
subjective. In the narrowest sense of the term, it could be interpreted to mean the one or two lines of
code that actually perform a comparison, zeroing operation, etc. that implements a requirement. A
broader interpretation might be that it includes the module that is invoked in response to a SFR-
enforcing TSFI, and all modules that may be invoked in turn by that module (and so on until the
completion of the call). Neither of these interpretations is particularly satisfying, since the narrowness
of the first interpretation may lead to important modules being incorrectly categorised as SFR
supporting, while the second leads to modules that are actually not SFR-enforcing being classified as
such.

A description of a module should be such that one could create an implementation of the module from
the description, and the resulting implementation would be 1) identical to the actual TSF
implementation in terms of the interfaces presented, 2) identical in the use of interfaces that are
mentioned in the design, and 3) functionally equivalent to the description of the purpose of the TSF
module. For instance, RFC 793 provides a high-level description of the TCP protocol. It is necessarily
implementation independent. While it provides a wealth of detail, it is not a suitable design
description because it is not specific to an implementation. An actual implementation can add to the
protocol specified in the RFC, and implementation choices (for example, the use of global data vs. local
data in various parts of the implementation) may have an impact on the analysis that is performed.
The design description of the TCP module would list the interfaces presented by the implementation
(rather than just those defined in RFC 793), as well as an algorithm description of the processing
associated with the modules implementing TCP (assuming they were part of the TSF).

In the design, modules are described in detail in terms of the function they provide (the purpose); the
interfaces they present (when required by the criteria); the return values from such interfaces; the
interfaces (presented by other modules) they use (provided those interfaces are required to be also

© ISO/IEC 2020 - All rights reserved 168



ISO/IEC DIS 15408-3:2020(E)

described); and a description of how they provide their functionality using a technique appropriate to
the method used to implement the module.

The purpose of a module should be described indicating what function the module is providing. It
should be sufficient so that the reader could get a general idea of what the module's function is in the
architecture.

The interfaces presented by a module are those interfaces used by other modules to invoke the
functionality provided. Interfaces include both explicit interfaces (e.g. a calling sequence invoked by
other modules) as well as implicit interfaces (e.g. global data manipulated by the module). Interfaces
are described in terms of how they are invoked, and any values that are returned. This description
would include a list of parameters, and descriptions of these parameters. If a parameter were expected
to take on a set of values (e.g. a “flag” parameter), the complete set of values the parameter could take
on that would have an effect on module processing would be specified. Likewise, parameters
representing data structures are described such that each field of the data structure is identified and
described. Global data should be described to the extent required to understand their purpose. The
level of description required for a global data structure needs to be identical to the one for module
interfaces, where the input parameter and return values correspond to the individual fields and their
possible values in the data structure. Global data structures may be described separate from the
modules that manipulate or read them as long as the design of the modules contain sufficient
information about the global data structures updated or the information extracted from global data
structures.

Note that different programming languages may have additional “interfaces” that would be non-
obvious; an example would be operator/function overloading in C++. This “implicit interface” in the
class description would also be described as part of the module design. Note that although a module
could present only one interface, it is more common that a module presents a small set of related
interfaces.

When it is required to describe the interfaces used by a module, it must be clear from either the design
description of the module or the purpose of the module called, what service is expected from the
module called. For example if Module A is being described, and it uses Module B's bubble sort routine,
the description of the interaction between modules must allow to identify why Module B's bubble sort
routine is called and what this call contributes to the implementation of the SFRs. The interface and
purpose of Module B's bubble sort routine must be described as part of the interfaces of Module B
(provided the level of ADV_TDS and the classification of Module B require a description its interfaces)
and so Module A just needs to identify what data it needs to have sorted using this routine. An
adequate description would be: “Module A invokes Module B's interface double_bubble() to sort the
usernames in alphabetical order”.

Note that if this sorting of the user names is not important for the enforcement of any SFR (e.g. it is just
done to speed up things and an algorithmically identical implementation of Module A could also avoid
to have the usernames sorted), the use of Module B's bubble sort routine is not SFR-enforcing and it is
sufficient to explain in the description of Module A that the usernames are sorted in alphabetical order
to enhance performance. Module B may be classified as “SFR-supporting” only and the level of
ADV_TDS chosen indicates if the interfaces of SFR-supporting modules need to be described or if it is
sufficient to just describe the purpose of Module B.

As discussed previously, the algorithmic description of the module should describe in an algorithmic
fashion the implementation of the module. This can be done in pseudo-code, through flow charts, or
(at ADV_TDS.3 Basic modular design) informal text. It discusses how the module inputs and called
functions are used to accomplish the module's function. It notes changes to global data, system state,
and return values produced by the module. It is at the level of detail that an implementation could be
derived that would be very similar to the actual implementation of the TOE.

© ISO/IEC 2020 - All rights reserved 169



ISO/IEC DIS 15408-3:2020(E)

[t should be noted that source code does not meet the module documentation requirements. Although
the module design describes the implementation, it is not the implementation. The comments
surrounding the source code might be sufficient documentation if they provide an explanation of the
intent of the source code. In-line comments that merely state what each line of code is doing are
useless because they provide no explanation of what the module is meant to accomplish.

In the elements below, the labels (SFR-enforcing, SFR-supporting, and SFR-non-interfering) discussed
for subsystems and modules are used to describe the amount and type of information that needs to be
made available by the developer. The elements have been structured so that there is no expectation
that the developer provide only the information specified. That is, if the developer's documentation of
the TSF provides the information in the requirements below, there is no expectation that the
developer update their documentation and label subsystems and modules as SFR-enforcing, SFR-
supporting or SFR-non-interfering. The primary purpose of this labelling is to allow developers with
less mature development methodologies (and associated artefacts, such as detailed interface and
design documentation) to provide the necessary evidence without undue cost.

A.4.3 Levelling Approach

Because there is subjectivity in determining what is SFR-enforcing vs. SFR-supporting (and in some
cases, even determining what is SFR-non-interfering the following paradigm has been adopted in this
family. In early components of the family, the developer makes a determination about the
classification of the subsystems into SFR-enforcing, etc., supplying the appropriate information, and
there is little additional evidence for the evaluator to examine to support this claim. As the level of
desired assurance increases, while the developer still makes a classification determination, the
evaluator obtains more and more evidence that is used to confirm the developer's classification.

In order to focus the evaluator's analysis on the SFR-related portions of the TOE, especially at lower
levels of assurance, the components of the family are levelled such that initially detailed information is
required only for SFR-enforcing architectural entities. As the level of assurance increases, more
information is required for SFR-supporting and (eventually) SFR-non-interfering entities. It should be
noted that even when complete information is required, it is not required that all of this information
be analysed in the same level of detail. The focus should be in all cases on whether the necessary
information has been provided and analysed.

Table A.1 summarizes the information required at each of the family components for the architectural
entities to be described.

Table A.1 — Description Detail Levelling

TSF subsystem TSF Module
SFR
SFR Enforce | SFR Support SFR NI SFR Enforce Support SFR NI
structure,
ADY‘TD.S'l Basic summary of designation designation
design (informal SFR-Enf. SUbDOrta SUbDOrt
presentation) behaviour, pP pp
interactions
structure,
detailed
- structure,
ADV‘.TDS'Z description of summary of | designation
Architectural SFR-Enf. other support
design (1n-formal behaviour, behaviour, interactions
presentation) summary of interactions
other
behaviour,

© ISO/IEC 2020 - All rights reserved 170




ISO/IEC DIS 15408-3:2020(E)

interactions

ADV_TDS.3 Basic
modular design
(informal
presentation)

description,
interactions

description,
interactions

description,
interactions

purpose, SFR
interfacesb

interaction,
purpose

interaction,
purpose

ADV_TDS.4
Semiformal
modular design
(semiformal

description,
interactions

description,
interactions

description,
interactions

purpose, SFR
interfaces

purpose,
SFR
interfaces

interaction,
purpose

presentation)

ADV_TDS.5
Complete
semiformal
modular design
(semiformal
presentation)

description,
interactions

description,
interactions

description,
interactions

purpose, all
interfacesc

purpose, all
interfaces

purpose, all
interfaces

ADV_TDS.6
Complete
semiformal
modular design
with formal high-
level design
presentation
(semiformal
presentation;
additional formal
presentation)

description,
interactions

description,
interactions

description,
interactions

purpose, all
interfaces

purpose, all
interfaces

purpose, all
interfaces

a designation support means that only documentation sufficient to support the classification of the subsystem / module is
needed.

b SFR interfaces means that the module description contains, for each SFR-related interface, the returned values and the
called interfaces to other modules.

¢ All interfaces means that the module description contains, for each interface, the returned values and the called interfaces to
other modules.

A.4.4 Security relevance

The comments to WD2 regarding this chapter are pending as the contributor was not able to answer
the comments until the deadline.

The ISO/IEC 15408 series concentrates the description, the evidence and the analysis on the security
functionality of the TOE. This requires characterization of security relevance of functional and physical
parts of the TOE. Interfaces, subsystems and modules may be categorised (either implicitly or

» o«

explicitly) as “SFR-enforcing”, “SFR-supporting”, or “SFR-noninterfering”.

The developer evidence and the evaluation analysis relates to the TOE and focus on the TSF and its
SFR-enforcing and SFR-supporting implementation. The security architecture description shall
demonstrate that the identified non-TSF subsystems of the TOE are not bypassing the TSF and the TSF
protects themselves against corruption by non-TSF code or entities. The developer shall describe the
SFR-noninterfering interfaces, subsystems and modules in the TOE design and demonstrate that they
do not interfere with the TSF because of their purposes, interactions or separation of resources.

An interface, subsystem or module is

— SFR-enforcing, if it directly implements an SFR.

© ISO/IEC 2020 - All rights reserved 171




ISO/IEC DIS 15408-3:2020(E)

— SFR-supporting if it has to operate functionally correctly in order to support the proper function of
the SFRs.

— SFR-non-interfering if it is not related to the implementation of the SFRs.

The focus on security enforcing and security supporting functionality requires evidence of non-
interference of the other functionality. Even correct implemented security enforcing functions and
security mechanisms may be bypassed, circumvented, deactivated, corrupted, or directly
attacked. Non-interference implies that the TSF cannot be misused and unauthorized access to the
resources of the TSF implementation is prevented or impossible. Therefore the security architecture
aspects of non-bypassability and self-protection are critical if security relevance of interfaces,
subsystems and modules is categorized and this categorization is used in the vulnerability analysis.

TSF self-protection is the security architecture property whereby the TSF cannot be corrupted by non-
TSF code or entities. This includes non-TSF subsystems of TOE and non-TOE parts of the IT product. It
is similar to the evidence for SFR-non-interfering subsystems/modules.

The security domains are environments provided by the TSF for the use by untrusted entities in such a
way that these environments are isolated and protected from each other.

Therefore the analysis of non-interference during evaluation requires examination of the security
architecture of the TOE (ADV_ARC) and may need more information on non-TSF subsystems than only
the TOE structure in terms of subsystems as provided for ADV_TDS.x.1. The developers shall provide a
rationale that TSF is correctly defined and the analysis of SFR-non-interfering module in terms of its
purpose and interaction with other modules

— purpose: how a module provides their functionality, no further design decisions are needed.

— interaction: reason that subsystems or modules communicate, and characterizes the information
that is passed (less details than for interfaces).

During evaluation non-interference shall be analysed as part of the examination of functional
specification and TOE design, and the vulnerability analysis. The categorization of interfaces,
subsystems and modules as SFR-enforcing, SFR-supporting and SFR-noninterfering implies specific
examination of the functional specification, design and testing. An interpretation of TSFI as all
accessible external interfaces of the TSF would help this analysis. The functional tests of all TSF
subsystems (beginning with ATE_DPT.1) and all TSF modules (ATE_DPT.3 and higher) should provide
evidence for the correctness of their security categorization.

A.5 ADV SPM: Supplementary material on formalmethodsRelationship
with the security target and the functional specification

Formal methods provide a mathematical representation of the TSF and its behaviour and are required
by the ADV SPM.1 (Formal TSF model) and also ADV FSP.6 (Complete semiformal functional
specification with additional formal specification), and ADV TDS.6 (Complete semiformal modular
design with formal high-level design presentation) components. In ISO/IEC 18045:20XX, Annex C
Formal style, supplementary material on formal methods is provided.

Figure 3-1 illustrates the relationships between the SPM as specified in ADV SPM.1 and the
representations of the TSF provided by the security target and the functional specification.

© ISO/IEC 2020 - All rights reserved 172



ISO/IEC DIS 15408-3:2020(E)

{S. OBJECTIVES for the TOE env}

Security Target
ASE
ASE ASE
{SFRs} {S. OBJECTIVES for the TOE} —— SPD
|
\ |
ADV_SPM.1.3C ADV_SPM.1.4C ADV SPM.1
ADV SPM.1.3D On tools and explanatory text
ADV_SPM.1.5C F | TOE P i 2’;‘\;—?2'&-1'12
orma roperties PV
ADV_FSP Formal TSF Mv(_)sgr&!.m - BDV_SPM.I.ZD ﬁgz ngg

ADV_SPM.1.4D
ADV_SPM.1.5D
ADV_SPM.1.6D

yd

TSF Functional Specification -

ADV_TDS
ADV_TDS .
= TOE Design
ADV_IMP
ADV_IMP

TSF Implementation Representation

-~ ADV_SPM.1.6C

- ADV_SPM.1.7C
Ptae ADV_SPM.1.8C

e formal proof

preservation of properties

relation of correspondance

{S. OBJECTIVES for the TOE env}

Security Target
ASE
ASE ASE
{SFRs} {S. OBJECTIVES for the TOE} —— SPD
|
N l
ADV_SPM.1.3C ADV_SPM.1.4C ADV_SPM.1
ADV_SPM.1.3D On tools and explanatory text
ADV_SPM.1.5C F | TOE P i :g\c_izmi.ig
orma roperties SPM.1.
ADV_FSP Formal TSF Mv?sg;&!,m - EDV?SPM.l.ZD :g&:m'i;g

ADV_SPM.1.4D
ADV_SPM.1.5D
ADV_SPM.1.6D

yd

TSF Functional Specification -

ADV_TDS
ADV_TDS .
= TOE Design
ADV_IMP
ADV_IMP

TSF Implementation Representation

_-~" ADV_SPM.1.6C
e ADV_SPM.1.7C
- ADV_SPM.1.8C

e formal proof

preservation of properties

relation of correspondance

Figure 15-1 Relationship of ADV SPM to other families and constructs

Class ASE defines the requirements for the correspondence between SFRs and the security objectives

for the TOE, as well as the requirements for the correspondence between the SPD elements and the

security objectives for the TOE and those for the operational environment, respectively.

© ISO/IEC 2020 - All rights reserved

173



ISO/IEC DIS 15408-3:2020(E)

Each assurance family specific to a TSF representation, i.e. Functional specification (ADV FSP), TOE
design (ADV TDS), and TSF Implementation representation (ADV IMP) defines both requirements
pertaining to developer actions for the correspondence of that specific TSF representation and the one
directly above it and requirements for the evaluation of the correspondence of that specific TSF
representation to the set of SFRs.

The ADV SPM family focuses on a formal security model which is a formal representation of the
essential aspects of security (i.e. the TSF) and their relationship to the behaviour of the TOE.

Specifically, the formal TSF model is a formal description of the system being evaluated as defined by
the entire set of SFRs described in the ST. The set of formal TOE properties defined for this formal

model covers all the security objectives for the TOE. To this end, the ADV SPM family defines:

e requirements pertaining to developer actions for formally modelling the TSF (ADV SPM.1.1D)
and the set of formal TOE properties (ADV SPM.1.2D);

e requirements regarding the content and presentation of the correspondence between:

o the formal TSF model and the complete set of SFRs (ADV SPM.1.3C);

o the formal TOE properties and the security objectives for the TOE (ADV SPM.1.4C).

Assurance is provided by formally proving that the formal TSF model satisfies the formal TOE

properties. To this end, the ADV SPM family defines requirements for this formal proof
(ADV SPM.1.3D and ADV SPM.1.5C). The confidence gained by formally proving the properties of the

formal model is accompanied by confidence gained by defining a correspondence rationale between
the formal model and the TSF functional specification (ADV SPM.1.4D). The correspondence rationale

consists of a formal proof when mapping to formal aspects of the TSF functional specification
(ADV SPM.1.6D). It consists of a semiformal demonstration when the functional specification is

described using semiformal style (ADV SPM.1.5D). The ADV SPM family defines content requirements

for the correspondence rationale concerning the preservation of the formal TOE properties by the TSF
functional specification (ADV SPM.1.6C/7C/8C).

The ADV SPM family includes requirements concerning the underlying mathematical theory
(ADV SPM.1.1C), the tools used for the formal modelling and proof (ADV SPM.1.7D and

ADV SPM.1.9C) as well as requirements on the explanatory text supporting and documenting each
element (ADV SPM.1.2QC).

ADV FSP requires that the developer establishes the correspondence between the TSF functional
specification and the SFRs. Although this requirement is independent of the SPM, when ADV SPM.1 is
used this correspondence is a by-product of the correspondence between SFRs and formal TSF model
on one hand and between the model and the functional specification on the other hand.

Figure 3-1 shows the role of the formal TSF model in the relationship between the functional
specification and the security target (SFRs and TOE properties), which is afterwards propagated

across the design and implementation representations by means of ADV TDS and ADV IMP families of
requirements.

© ISO/IEC 2020 - All rights reserved 174



ISO/IEC DIS 15408-3:2020(E)

© ISO/IEC 2020 - All rights reserved 175



ISO/IEC DIS 15408-3:2020(E)

© ISO/IEC 2020 - All rights reserved 176



ISO/IEC DIS 15408-3:2020(E)

Annex B
(informative)

Composition (ACO)

The goal of this annex is to explain the concepts behind composition evaluations and the ACO criteria.
This annex does not define the ASE criteria; this definition can be found in Clause 9.

B.1 Necessity for composed TOE evaluations

The IT market is, on the whole, made up of vendors offering a particular type of product/technology.
Although there is some overlap, where a PC hardware vendor may also offer application software
and/or operating systems or a chip manufacturer may also develop a dedicated operating system for
their own chipset, it is often the case that an IT solution is implemented by a variety of vendors.

There is sometimes a need for assurance in the combination (composition) of components in addition
to the assurance of the individual components. Although there is cooperation between these vendors,
in the dissemination of certain material required for the technical integration of the components, the
agreements rarely stretch to the extent of providing detailed design information and development
process/procedure evidence. This lack of information from the developer of a component on which
another component relies means that the dependent component developer does not have access to the
type of information necessary to perform an evaluation of both the dependent and base components at
EALZ2 or above. Therefore, while an evaluation of the dependent component can still be performed at
any assurance level, to compose components with assurance at EAL2 or above it is necessary to reuse
the evaluation evidence and results of evaluations performed for the component developer.

[t is intended that the ACO criteria are applicable in the situation where one IT entity is dependent on
another for the provision of security services. The entity providing the services is termed the “base
component”, and that receiving the services is termed the “dependent component”. This relationship
may exist in a number of contexts. For example, an application (dependent component) may use
services provided by an operating system (base component). Alternatively, the relationship may be
peer-to-peer, in the sense of two linked applications, either running in a common operating system
environment, or on separate hardware platforms. If there is a dominant peer providing the services to
the minor peer, the dominant peer is considered to be the base component and the minor peer the
dependent component. If the peers provide services to each other in a mutual manner, each peer will
be considered to be the base component for the services offered and dependent component for the
services required. This will require iterations of the ACO components applying all requirements to
each type of component peer.

The criteria are also intended to be more broadly applicable, stepwise (where a composed TOE
comprised of a dependent component and a base component itself becomes the base component of
another composed TOE), in more complex relationships, but this may require further interpretation.

It is still required for composed TOE evaluations that the individual components are evaluated
independently, as the composition evaluation builds on the results of the individual component
evaluations. The evaluation of the dependent component may still be in progress when the composed
TOE evaluation commences. However, the dependent component evaluation must complete before the
composed TOE evaluation completes.

The composed evaluatien—activities—evaluation activities may take place at the same time as the
dependent component evaluation. This is due to two factors:

© ISO/IEC 2020 - All rights reserved 177



ISO/IEC DIS 15408-3:2020(E)

a) Economic/business drivers - the dependent component developer will either be sponsoring the
composition evaluation—activities—evaluation activities or supporting these activities as the
evaluation deliverables from the dependent component evaluation are required for composed
evaluation activities.

b) Technical drivers - the components consider whether the requisite assurance is provided by the
base component (e.g. considering the changes to the base component since completion of the
component evaluation) with the understanding that the dependent component has recently
undergone (is undergoing) component evaluation and all evaluation deliverables associated with
the evaluation are available. Therefore, there are no activities during composition requesting the
dependent component evaluation—activities—evaluation activities to be re-verified. Also, it is
verified that the base component forms (one of) the test configurations for the testing of the
dependent component during the dependent component evaluation, leaving ACO_CTT to consider
the base component in this configuration.

The evaluation evidence from the evaluation of the dependent component is required input into the
composed TOE evaluation activities. The only evaluation material from the evaluation of the base
component that is required as input into the composed TOE evaluation activities:

a) Residual vulnerabilities in the base component, as reported during the base component
evaluation. This is required for the ACO_VUL activities.

No other evaluation evidence from the base component activities should be required for the composed
TOE evaluation, as the evaluation results from the component evaluation of the base component
should be reused. Additional information about the base component may be required if the composed
TOE TSF includes more of the base component than was considered to be TSF during component
evaluation of the base component.

The component evaluation of the base and dependent components are assumed to be complete by the
time final verdicts are assigned for the ACO components.

The ACO_VUL components only consider resistance against an attacker with an attack potential up to
Enhanced-Basic. This is due to the level of design information that can be provided of how the base
component provides the services on which the dependent component relies through application of the
ACO_DEYV activities. Therefore, the confidence arising from composed TOE evaluations using CAPs is
limited to a level similar to that obtained from EAL4 component TOE evaluations. Although assurance
in the components that comprise the composed TOE may be higher than EAL4.

B.2 Performing Security Target evaluation for a composed TOE

An ST will be submitted by the developer for the evaluation of the composed (base component +
dependent component) TOE. This ST will identify the assurance package to be applied to the
composed TOE, providing assurance in the composed entity by drawing upon the assurance gained in
the component evaluations.

The purpose of considering the composition of components within an ST is to validate the
compatibility of the components from the point of view of both the environment and the requirements,
and also to assess that the composed TOE ST is consistent with the component STs and the security
policies expressed within them. This includes determining that the component STs and the security
policies expressed within them are compatible.

The composed TOE ST may refer out to the content of the component STs, or the ST author may choose
to reiterate the material of the component STs within the composed TOE ST providing a rationale of
how the component STs are represented in the composed TOE ST.

© ISO/IEC 2020 - All rights reserved 178



ISO/IEC DIS 15408-3:2020(E)

During the conduct of the ASE_CCL evaluation-activities-evaluation activities for a composed TOE ST
the evaluator determines that the component STs are accurately represented in the composed TOE ST.
This is achieved through determining that the composed TOE ST demonstrably conforms to the
component TOE STs. Also, the evaluator will need to determine that the dependencies of the
dependent component on the operational environment are adequately fulfilled in the composed TOE.

The composed TOE description will describe the composed solution. The logical and physical scope
and boundary of the composed solution will be described, and the logical boundary(ies) between the
components will also be identified. The description will identify the security functionality to be
provided by each component.

The statement of SFRs for the composed TOE will identify which component is to satisfy an SFR. If an
SFR is met by both components, then the statement will identify which component meets the different
aspects of the SFR. Similarly, the composed TOE Summary Specification will identify which component
provides the security functionality described.

The package of ASE: Security Target evaluation requirements applied to the composed TOE ST should
be consistent with the package of ASE: Security Target evaluation requirements used in the
component evaluations.

Reuse of evaluation results from the evaluation of component STs can be made in the instances that
the composed TOE ST directly refers to the component STs. e.g. if the composed TOE ST refers to a
component ST for part of its statement of SFRs, the evaluator can understand that the requirement for
the completion of all assignment and selection operations (as stated in ASE_REQ.*.3C has been
satisfied in the component evaluations.

B.3 Interactions between composed IT entities

The TSF of the base component is often defined without knowledge of the dependencies of the
possible applications with which it may by composed. The TSF of this base component is defined to
include all parts of the base component that have to be relied upon for enforcement of the base
component SFRs. This will include all parts of the base component required to implement the base
component SFRs.

The TSFI of this base component represents the interfaces provided by the TSF to the external entities
defined in the statement of SFRs to invoke a service of the TSF. This includes interfaces to the human
user and also interfaces to external IT entities. However, the TSFI only includes those interfaces to the
TSF, and therefore is not necessarily an exhaustive interface specification of all possible interfaces
available between an external entity and the base component. The base component may present
interfaces to services that were not considered security-relevant, either because of the inherent
purpose of the service (e.g. adjust type font) or because associated ISO/IEC 15408-2 SFRs are not
being claimed in the base component's ST (e.g. the login interface when no FIA: Identification and
authentication SFRs are claimed).

The functional interfaces provided by the base component are in addition to the security interfaces
(TSFIs), and are not required to be considered during the base component evaluation. These often
include interfaces that are used by a dependent component to invoke a service provided by the base
component.

The base component may include some indirect interfaces through which TSFIs may be called, e.g.
APIs that can be used to invoke a service of the TSF, which were not considered during the evaluation
of the base component.

© ISO/IEC 2020 - All rights reserved 179



ISO/IEC DIS 15408-3:2020(E)

TSFItoIT entity Functional calls by dependent component

TSFl to
human user

TSF

Non-TSF portions of TOE

TOE (Base Component) Boundary

Non-TOE portions of product

Product boundary

Figure B.1 — Base component abstraction

The dependent component, which relies on the base component, is similarly defined: interfaces to
external entities defined in the SFRs of the component ST are categorised as TSFI and are examined in
ADV_FSP. This is illustrated in Figure B.1).

Any call out from the dependent TSF to the environment in support of an SFR will indicate that the
dependent TSF requires some service from the environment in order to satisfy the enforcement of the
stated dependent component SFRs. Such a service is outside the dependent component boundary and
the base component is unlikely to be defined in the dependent ST as an external entity. Hence, the calls
for services made out by the dependent TSF to its underlying platform (the base component) will not
be analysed as part of the Functional specification (ADV_FSP) activities. These dependencies on the
base component are expressed in the dependent component ST as security objectives for the
environment.

This abstraction of the dependent component and the interfaces is shown in Figure B.2 below.

Product boundary

Non-TOE portions of dependent product

TOE (Dependent Component) Boundary

TSFlto

human users Non-TSF portions of TOE
TSF

Functional calls to base component

SFR-related calls to base component

Figure B.2 — Dependent component abstraction

© ISO/IEC 2020 - All rights reserved 180



ISO/IEC DIS 15408-3:2020(E)

When considering the composition of the base component and the dependent component, if the
dependent component's TSF requires services from the base component to support the
implementation of the SFR, the interface to the service will need to be defined. If that service is
provided by the base component's TSF, then that interface should be a TSFI of the base component and
will therefore already be defined within the functional specification of the base component.

If, however, the service called by the dependent component's TSF is not provided by the TSF of the
base component (i.e. it is implemented in the non-TSF portion of the base component or possibly even
in the non-TOE portion of the base component (not illustrated in Figure B.3), there is unlikely to be a
TSFI of the base component relating to the service, unless the service is mediated by the TSF of the
base component. The interfaces to these services from the dependent component to the operational
environment are considered in the family Reliance of dependent component (ACO_REL).

The non-TSF portion of the base component is drawn into the TSF of the composed TOE due to the
dependencies the dependent component has on the base component to support the SFRs of the
dependent component. Therefore, in such cases, the TSF of the composed TOE would be larger than
simply the sum of the components' TSFs.

Dependent Component

Dependent component

- TSF

Composed TSF

Bage component TSF

Base Component

Composed TOE Boundary
Figure B.3 — Composed TOE abstraction

[t may be the case that the base component TSFI is being called in a manner that was unforeseen in the
base component evaluation. Hence there would be a requirement for further testing of the base
component TSFL

The possible interfaces are further described in the following diagram (Figure B.4) and supporting
text.

© ISO/IEC 2020 - All rights reserved 181



d)

ISO/IEC DIS 15408-3:2020(E)

>
@

Non-TSF-a

Dependent component-a

ACO_REL
(component-a)

__ ACO_DEV
ég¥ﬁifgnt 0 — = . K {component-b)

TFSk [T ¢ 5

C
TSF-b D Base component-b

Non-TSF-b

Figure B.4 — Composed component interfaces

Arrows going into 'dependent component-a' (A and B) =where the component expects the
environment to respond to a service request (responding to calls out from dependent component
to the environment);

Arrows coming out of 'base component-b' (C and D) = interfaces of services provided by the base
component to the environment;

Broken lines between components = types of communication between pairs of interfaces;

The other (grey) arrows = interfaces that are described by the given criteria.

The following is a simplification, but explains the considerations that need to be made.

There are components a (‘dependent component-a‘) and b (‘base component-b'): the arrows coming
out of TSF-a are services provided by TSF-a and are therefore TSFIs(a); likewise, the arrows coming
out of TSF-b (“C”) are TSFIs(b). These are each detailed in their respective functional specs.
component-a is such that it requires services from its environment: those needed by the TSF(a) are
labelled “A”; the other (not related to TSF-a) services are labelled “B”.

When component-a and component-b are combined, there are four possible combinations of {services
needed by component-a} and {services provided by component-b}, shown as broken lines (types of
communication between pairs of interfaces). Any set of these might exist for a particular composition:

a)

b)

TSF-a needs those services that are provided by TSF-b (“A” is connected to “C”): this is
straightforward: the details about “C” are in the FSP for component-b. In this instance the
interfaces should all be defined in the functional specifications for the component-b.

Non-TSF-a needs those services that are provided by TSF-b (“B” is connected to “C”): this is
straightforward (again, the details about “C” are in the FSP for component-b), but unimportant:
security-wise.

Non-TSF-a needs those services that are provided by non-TSF-b (“B” is connected to “D”): we have
no details about D, but there are no security implications about the use of these interfaces, so they

© ISO/IEC 2020 - All rights reserved 182



ISO/IEC DIS 15408-3:2020(E)

do not need to be considered in the evaluation, although they are likely to be an integration issue
for the developer.

d) TSF-a needs those services that are provided by non-TSF-b (“A” is connected to “D”): this would
arise when component-a and component-b have different senses of what a “security service” is.
Perhaps component-b is making no claims about I&A (has no FIA SFRs in its ST), but component-a
needs authentication provided by its environment. There are no details about the “D” interfaces
available (they are not TSFI (b), so they are not in component-b's FSP).

Note: if the kind of interaction described in case d above exists, then the TSF of the composed TOE would be
TSF-a + TSF-b + Non-TSF-b. Otherwise, the TSF of the composed TOE would be TSF-a + TSF-b.

Interfaces types 2 and 4 of Figure B.4 are not directly relevant to the evaluation of the composed TOE.
Interfaces 1 and 3 will be considered during the application of different families:

a) Functional specification (ADV_FSP) (for component-b) will describe the C interfaces.
b) Reliance of dependent component (ACO_REL) will describe the A interfaces.

c) Development evidence (ACO_DEV) will describe the C interfaces for connection type 1 and the D
interfaces for connection type 3.

A typical example where composition may be applied is a database management system (DBMS) that
relies upon its underlying operating system (0S). During the evaluation of the DBMS component, there
will be an assessment made of the security properties of that DBMS (to whatever degree of rigour is
dictated by the assurance components used in the evaluation): its TSF boundary will be identified, its
functional specification will be assessed to determine whether it describes the interfaces to the
security services provided by the TSF, perhaps additional information about the TSF (its design,
architecture, internal structure) will be provided, the TSF will be tested, aspects of its life-cycle and its
guidance documentation will be assessed, etc.

However, the DBMS evaluation will not call for any evidence concerning the dependency the DBMS has
on the OS. The ST of the DBMS will most likely state assumptions about the OS in its Assumptions
subclause and state security objectives for the OS in its Environment subclause. The DBMS ST may
even instantiate those objectives for the environment in terms of SFRs for the 0OS. However, there will
be no specification for the OS that mirrors the detail in the functional specification, architecture
description, or other ADV evidence as for the DBMS. Reliance of dependent component (ACO_REL) will
fulfil that need.

Reliance of dependent component (ACO_REL) describes the interfaces of the dependent TOE that make
the calls to the base component for the provision of services. These are the interfaces to which the
base component is to respond. The interface descriptions are provided from the dependent
component's viewpoint.

Development evidence (ACO_DEV) describes the interfaces provided by the base component, which
respond to the dependent component service requests. These interfaces are mapped to the relevant
dependent component interfaces that are identified in the reliance information. (The completeness of
this mapping, whether the base component interfaces described represent all dependent component
interfaces, is not verified here, but in Composition rationale (ACO_COR)). At the higher levels of
ACO_DEYV the subsystems providing the interfaces are described.

Any interfaces required by the dependent component that have not been described for the base
component are reported in the rationale for Composition rationale (ACO_COR). The rationale also
reports whether the interfaces of the base component on which the dependent component relies were
considered within the base component evaluation. For any interfaces that were not considered in the

© ISO/IEC 2020 - All rights reserved 183



ISO/IEC DIS 15408-3:2020(E)

base component evaluation, a rationale is provided of the impact of using the interface on the base
component TSF.

© ISO/IEC 2020 - All rights reserved 184



Annex C

(informative)

ISO/IEC DIS 15408-3:2020(E)

Cross reference of assurance component dependencies

The dependencies documented in the components of Clauses 7 and 9-15 are the direct dependencies

between the assurance components.

The following dependency tables for assurance components show their direct, indirect and optional
dependencies. Each of the components that is a dependency of some assurance component is allocated
a column. Each assurance component is allocated a row. The value in the table cell indicate whether
the column label component is directly required (indicated by a cross “X”), indirectly required
(indicated by a dash “-”) or optional (indicated by an “0”), by the row label component. If no character
is presented, the component is not dependent upon another component.

Table C.1 — Dependency table for Class ADV: Development

ADV

ADV_F
SP.1

ADV_F
SP.2

ADV_F
SP.3

ADV_F
SP.4

ADV_F
SP.5

ADV_F
SP.6

ADV_I
MP.1

ADV_T
DS.1

ADV_T | ALC_C

DS.3

MC.5

ALC_C
MS.1

ALC_D
VS.2

ALC_L
CD.1

ALC_T
AT.1

ADV_ARC.1

X

ADV_COMP
1

ADV_FSP.1

ADV_FSP.2

ADV_FSP.3

ADV_FSP.4

ADV_FSP.5

ADV_FSP.6

LT I T - A ]

ADV_IMP.1

ADV_IMP.2

ADV_INT.1

ADV_INT.2

ADV_INT.3

LT I T - A ]

LT I T - A ]

ADV_SPM.1

ADV_TDS.1

ADV_TDS.2

ADV_TDS.3

ADV_TDS.4

ADV_TDS.5

ADV_TDS.6

X

Table C.2 — Dependency table for Class AGD: Guidance documents

AGD

ADV_FSP.1

AGD_OPE.1

X

© ISO/IEC 2020 - All rights reserved

185




ISO/IEC DIS 15408-3:2020(E)

AGD_PRE.1

Table C.3 — Dependency table for Class ALC: Life-cycle support

ALC

ADV_ | ADV_
FSP.2 | FSP.4

ADV_1
MP.1

ADV_
TDS.1

ADV_
TDS.3

ALC_C|ALC_C| ALC_
MS.1 | MS.3 | DVS.1

ALC_
DVS.2

ALC_L
CD.1

ALC_T
AT.1

ALC_CMC.1

X

ALC_CMC.2

ALC_CMC.3

ALC_CMC.4

ALC_CMC.5

Ko X X

ALC_CMS.1

ALC_CMS.2

ALC_CMS.3

ALC_CMS.4

ALC_CMS.5

ALC_COMP.1

ALC_DEL.1

ALC_DVS.1

ALC_DVS.2

ALC_FLR.1

ALC_FLR.2

ALC_FLR.3

ALC_LCD.1

ALC_LCD.2

ALC_TAT.1

ALC_TAT.2

ALC_TAT.3

ALC_TDA.1

ALC_TDA.2

ALC_TDA.3

X

Table C.4 — Dependency table for Class APE: Protection Profile evaluation

APE

APE_EC
D.1

APE_IN

T.1

APE_OB | APE RE

J.2 Q.1

APE_SP
D.1

APE_CCL.1

X

X

X

APE_ECD.1

APE_INT.1

APE_0OBJ.1

© ISO/IEC 2020 - All rights reserved

186




ISO/IEC DIS 15408-3:2020(E)

APE_0OBJ.2 X
APE_REQ.1
APE_REQ.2 X X -
APE_SPD.1

© ISO/IEC 2020 - All rights reserved 187



ISO/IEC DIS 15408-3:2020(E)

Table C.5 — Dependency table for Class ACE: Protection Profile Configuration evaluation

ACE

ACE_C
CL.1

ACE_E
CD.1

ACE_I
NT.1

ACE_M
CO0.1

ACE_O
BJ.1

ACE O

BJ.2

ACER
EQ.1

ACER
EQ.2

ACE_S
PD.1

APE_E
CD.1

ACE_CCL.1

X

X

0

0

ACE_CCO.1

X

X

0

0

0

X

ACE_ECD.1

ACE_INT.1

ACE_MCO.1

ACE_OBJ.1

ACE_0OBJ.2

ACE_REQ.1

ACE_REQ.2

ACE_SPD.1

Table C.6 — Dependency table for Class ASE: Security Target evaluation

ASE

ADV_A
RC.1

ADV_F
SP.1

ADV_F
SP.2

ADV_T
DS.1

ASE _EC
D.1

ASE_IN
T.1

ASE_O
BJ.2

ASE_R
EQ.1

ASE_SP
D.1

ASE_CCL.1

X

X

X

ASE_COMP.1

ASE_ECD.1

ASE_INT.1

ASE_OB]J.1

ASE_OB]J.2

ASE_REQ.1

ASE_REQ.2

ASE_SPD.1

ASE_TSS.1

ASE_TSS.2

X

Table C.7 — Dependency table for Class ATE: Tests

AD
VA

RC.

AD

V_F

SP.
1

ATE

AD

V_F

SP.
2

AD

V_F

SP.
3

AD

V_F

SP.
4

AD

V_F

SP.
5

AD

V.1

MP
1

.| DS.

AD
V_T

AD
V_T
DS.

1 2

AD

V_T

DS.
3

AD

V_T

DS.
4

AG

DO
PE.

1

ALC
TA

T.1

ATE

V.1

ATE
FU

N.1

co

ATE_COMP.1

ATE_COV.1

ATE_COV.2

ATE_COV.3

ATE_DPT.1

Mo X X

© ISO/IEC 2020 - All rights reserved

188




ISO/IEC DIS 15408-3:2020(E)

ATE_DPT.2 - - - - X -
ATE_DPT.3 - - - - - - - - | -
ATE_DPT.4 - - - - X - - - -
ATE_FUN.1 - - -
ATE_FUN.2 - - -
ATE_IND.1 X
ATE_IND.2 - X -
ATE_IND.3 - - X -
Table C.8 — Dependency table for Class AVA: Vulnerability assessment
AVA ADV | ADV|ADV |ADV|ADV|ADV|ADV|ADV|ADV|AGD|AGD | ALC | ATE | ATE | ATE
_AR | _FSP|_FSP| _FSP|_FSP( IM | TD | _TD|_TD| _OP | _PR| _TA | _CO | _DP| _FU
Ci1]| 1 2 3 4 |P1|S1|(S2|S3|E1(E1|T1|V1l|T1]|N1
AVA_COMP.1
AVA_VAN.1 X X X
AVA_VAN.2 X - X X X X
AVA_VAN.3 X - - - - - X X - - -
AVA_VAN.4 X - - - - - X X - - -
AVA_VAN.5 X - - - - - X X - - -
Table C.9 — Dependency table for class ACO: Composition
ACO ACO_ | ACO_ | ACO_ | ACO_ | ACO_ |ALCC|ALCC
DEV.1 | DEV.2 | DEV.3 | REL.1 | REL.2 | MC.1 | MS.1
ACO_COR.1 X X X
ACO_CTT.1 X X
ACO_CTT.2 X - X
ACO_DEV.1
ACO_DEV.2
ACO_DEV.3 X
ACO_REL.1
ACO_REL.2
ACO_VUL.1 X -
ACO_VUL.2 X -
ACO_VUL.3 X -
© ISO/IEC 2020 - All rights reserved 189




