
ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 i	
	

	

ISO/IEC	DIS	15408-3:2020(E)	

ISO/IEC	JTC	1/SC	27/WG	3	N1654	

Secretariat:	DIN	

Information	security,	cybersecurity	and	privacy	protection	—	Evaluation	criteria	for	IT	
security	—	Part	3:	Security	assurance	components	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 ii	
	

	

Contents	 Page	

1	 Scope	..................................................................................................................................................................	1 

2	 Normative	references	...................................................................................................................................	1 

3	 Terms	and	definitions,	symbols	and	abbreviated	terms	..................................................................	1 

4	 Overview	...........................................................................................................................................................	1 

5	 Assurance	paradigm	.....................................................................................................................................	2 
5.1	 Introduction	....................................................................................................................................................	2 
5.2	 ISO/IEC	15408	philosophy	..........................................................................................................................	2 
5.3	 Assurance	approach	.....................................................................................................................................	2 
5.3.1	 Introduction	....................................................................................................................................................	2 
5.3.2	 Significance	of	vulnerabilities	...................................................................................................................	2 
5.3.3	 Cause	of	vulnerabilities	...............................................................................................................................	3 
5.3.4	 ISO/IEC	15408	series	assurance	...............................................................................................................	3 
5.3.5	 Assurance	through	evaluation	..................................................................................................................	3 
5.4	 ISO/IEC	15408	series	evaluation	assurance	scale	..............................................................................	4 

6	 Security	assurance	components	...............................................................................................................	4 
6.1	 Introduction	....................................................................................................................................................	4 
6.2	 Assurance	class	structure	...........................................................................................................................	4 
6.2.1	 Class	name	........................................................................................................................................................	4 
6.2.2	 Class	introduction	..........................................................................................................................................	5 
6.2.3	 Assurance	families	........................................................................................................................................	5 
6.3	 Assurance	family	structure	........................................................................................................................	5 
6.3.1	 Family	name	....................................................................................................................................................	5 
6.3.2	 Objectives	.........................................................................................................................................................	6 
6.3.3	 Component	levelling	.....................................................................................................................................	6 
6.3.4	 Application	notes	...........................................................................................................................................	6 
6.3.5	 Assurance	components	................................................................................................................................	6 
6.4	 Assurance	component	structure	..............................................................................................................	6 
6.4.1	 Introduction	....................................................................................................................................................	6 
6.4.2	 Component	identification	...........................................................................................................................	7 
6.4.3	 Objectives	.........................................................................................................................................................	7 
6.4.4	 Application	notes	...........................................................................................................................................	7 
6.4.5	 Dependencies	..................................................................................................................................................	7 
6.4.6	 Assurance	elements	......................................................................................................................................	8 
6.5	 Assurance	elements	......................................................................................................................................	9 
6.6	 Component	taxonomy	..................................................................................................................................	9 

7	 Class	APE:	Protection	Profile	evaluation	...............................................................................................	9 
7.1	 Introduction	....................................................................................................................................................	9 
7.2	 PP	introduction	(APE_INT)	......................................................................................................................	10 
7.2.1	 Objectives	......................................................................................................................................................	10 
7.2.2	 APE_INT.1	PP	introduction	......................................................................................................................	10 
7.3	 Conformance	claims	(APE_CCL)	.............................................................................................................	10 
7.3.1	 Objectives	......................................................................................................................................................	10 
7.3.2	 APE_CCL.1	Conformance	claims	.............................................................................................................	11 
7.4	 Security	problem	definition	(APE_SPD)	..............................................................................................	13 



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 iii	
	

	

7.4.1	 Objectives	......................................................................................................................................................	13 
7.4.2	 APE_SPD.1	Security	problem	definition	..............................................................................................	13 
7.5	 Security	objectives	(APE_OBJ)	................................................................................................................	14 
7.5.1	 Objectives	......................................................................................................................................................	14 
7.5.2	 Component	levelling	..................................................................................................................................	14 
7.5.3	 APE_OBJ.1	Security	objectives	for	the	operational	environment	...............................................	14 
7.5.4	 APE_OBJ.2	Security	objectives	................................................................................................................	15 
7.6	 Extended	components	definition	(APE_ECD)	....................................................................................	16 
7.6.1	 Objectives	......................................................................................................................................................	16 
7.6.2	 APE_ECD.1	Extended	components	definition	....................................................................................	16 
7.7	 Security	requirements	(APE_REQ)	........................................................................................................	17 
7.7.1	 Objectives	......................................................................................................................................................	17 
7.7.2	 Component	levelling	..................................................................................................................................	17 
7.7.3	 APE_REQ.1	Direct	rationale	PP-Module	security	requirements	.................................................	17 
7.7.4	 APE_REQ.2	Derived	security	requirements	.......................................................................................	18 

8	 Class	ACE:	Protection	Profile	Configuration	evaluation	................................................................	20 
8.1	 Introduction	.................................................................................................................................................	20 
8.2	 PP-Module	introduction	(ACE_INT)	......................................................................................................	20 
8.2.1	 Objectives	......................................................................................................................................................	20 
8.2.2	 ACE_INT.1	PP-Module	introduction	......................................................................................................	20 
8.3	 PP-Module	conformance	claims	(ACE_CCL)	.......................................................................................	22 
8.3.1	 Objectives	......................................................................................................................................................	22 
8.3.2	 ACE_CCL.1	PP-Module	conformance	claims	.......................................................................................	22 
8.4	 PP-Module	security	problem	definition	(ACE_SPD)	........................................................................	23 
8.4.1	 Objectives	......................................................................................................................................................	23 
8.4.2	 ACE_SPD.1	PP-Module	Security	problem	definition	........................................................................	24 
8.5	 PP-Module	security	objectives	(ACE_OBJ)	..........................................................................................	24 
8.5.1	 Objectives	......................................................................................................................................................	24 
8.5.2	 Component	levelling	..................................................................................................................................	24 
8.5.3	 ACE_OBJ.1	Direct	Rationale	PP-Module	security	objectives	.........................................................	24 
8.5.4	 ACE_OBJ.2	PP-Module	Security	objectives	..........................................................................................	25 
8.6	 PP-Module	extended	components	definition	(ACE_ECD)	..............................................................	26 
8.6.1	 Objectives	......................................................................................................................................................	26 
8.6.2	 ACE_ECD.1	PP-Module	extended	components	definition	..............................................................	26 
8.7	 PP-Module	security	requirements	(ACE_REQ)	..................................................................................	27 
8.7.1	 Objectives	......................................................................................................................................................	27 
8.7.2	 Component	levelling	..................................................................................................................................	28 
8.7.3	 ACE_REQ.1	PP-Module	stated	security	requirements	....................................................................	28 
8.7.4	 ACE_REQ.2	PP-Module	derived	security	requirements	.................................................................	29 
8.8	 PP-Module	consistency	(ACE_MCO)	......................................................................................................	30 
8.8.1	 Objectives	......................................................................................................................................................	30 
8.8.2	 ACE_MCO.1	PP-Module	consistency	......................................................................................................	30 
8.9	 PP-Configuration	consistency	(ACE_CCO)	...........................................................................................	32 
8.9.1	 Objectives	......................................................................................................................................................	32 
8.9.2	 ACE_CCO.1	PP-Configuration	consistency	...........................................................................................	32 

9	 Class	ASE:	Security	Target	evaluation	..................................................................................................	36 
9.1	 Introduction	.................................................................................................................................................	36 
9.2	 ST	introduction	(ASE_INT)	.......................................................................................................................	36 
9.2.1	 Objectives	......................................................................................................................................................	36 
9.2.2	 ASE_INT.1	ST	introduction	.......................................................................................................................	37 
9.3	 Conformance	claims	(ASE_CCL)	..............................................................................................................	38 
9.3.1	 Objectives	......................................................................................................................................................	38 



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 iv	
	

	

9.3.2	 ASE_CCL.1	Conformance	claims	..............................................................................................................	38 
9.4	 Security	problem	definition	(ASE_SPD)	..............................................................................................	40 
9.4.1	 Objectives	......................................................................................................................................................	40 
9.4.2	 ASE_SPD.1	Security	problem	definition	..............................................................................................	40 
9.5	 Security	objectives	(ASE_OBJ)	.................................................................................................................	41 
9.5.1	 Objectives	......................................................................................................................................................	41 
9.5.2	 Component	levelling	..................................................................................................................................	41 
9.5.3	 ASE_OBJ.1	Direct	rationale	Security	objectives	for	the	operational	environment	...............	41 
9.5.4	 ASE_OBJ.2	Security	objectives	................................................................................................................	42 
9.6	 Extended	components	definition	(ASE_ECD)	.....................................................................................	43 
9.6.1	 Objectives	......................................................................................................................................................	43 
9.6.2	 ASE_ECD.1	Extended	components	definition	.....................................................................................	43 
9.7	 Security	requirements	(ASE_REQ)	........................................................................................................	44 
9.7.1	 Objectives	......................................................................................................................................................	44 
9.7.2	 Component	levelling	..................................................................................................................................	44 
9.7.3	 ASE_REQ.1	Direct	Rationale	Stated	security	requirements	..........................................................	44 
9.7.4	 ASE_REQ.2	Derived	security	requirements	........................................................................................	46 
9.8	 TOE	summary	specification	(ASE_TSS)	................................................................................................	48 
9.8.1	 Objectives	......................................................................................................................................................	48 
9.8.2	 Component	levelling	..................................................................................................................................	48 
9.8.3	 ASE_TSS.1	TOE	summary	specification	................................................................................................	48 
9.8.4	 ASE_TSS.2	TOE	summary	specification	with	architectural	design	summary	.........................	49 
9.9	 Consistency	of	composite	product	Security	Target	(ASE_COMP)	...............................................	50 
9.9.1	 Objectives	......................................................................................................................................................	50 
9.9.2	 ASE_COMP.1	...........................................................................................		Consistency	of	Security	Target	 50 

10	 Class	ADV:	Development	..........................................................................................................................	52 
10.1	 Introduction	.................................................................................................................................................	52 
10.2	 Security	Architecture	(ADV_ARC)	..........................................................................................................	57 
10.2.1	 Objectives	......................................................................................................................................................	57 
10.2.2	 Component	levelling	..................................................................................................................................	57 
10.2.3	 Application	notes	........................................................................................................................................	57 
10.2.4	 ADV_ARC.1	Security	architecture	description	..................................................................................	58 
10.3	 Functional	specification	(ADV_FSP)	.....................................................................................................	59 
10.3.1	 Objectives	......................................................................................................................................................	59 
10.3.2	 Component	levelling	..................................................................................................................................	59 
10.3.3	 Application	notes	........................................................................................................................................	59 
10.3.4	 ADV_FSP.1	Basic	functional	specification	...........................................................................................	62 
10.3.5	 ADV_FSP.2	Security-enforcing	functional	specification	.................................................................	63 
10.3.6	 ADV_FSP.3	Functional	specification	with	complete	summary	....................................................	64 
10.3.7	 ADV_FSP.4	Complete	functional	specification	...................................................................................	65 
10.3.8	 ADV_FSP.5	Complete	semi-formal	functional	specification	with	additional	error	

information	...................................................................................................................................................	66 
10.3.9	 ADV_FSP.6	Complete	semi-formal	functional	specification	with	additional	formal	

specification	.................................................................................................................................................	67 
10.4	 Implementation	representation	(ADV_IMP)	.....................................................................................	68 
10.4.1	 Objectives	......................................................................................................................................................	68 
10.4.2	 Component	levelling	..................................................................................................................................	69 
10.4.3	 Application	notes	........................................................................................................................................	69 
10.4.4	 ADV_IMP.1	Implementation	representation	of	the	TSF	.................................................................	70 
10.4.5	 ADV_IMP.2	Complete	mapping	of	the	implementation	representation	of	the	TSF	...............	71 
10.5	 TSF	internals	(ADV_INT)	...........................................................................................................................	71 
10.5.1	 Objectives	......................................................................................................................................................	71 



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 v	
	

	

10.5.2	 Component	levelling	..................................................................................................................................	72 
10.5.3	 Application	notes	........................................................................................................................................	72 
10.5.4	 ADV_INT.1	Well-structured	subset	of	TSF	internals	.......................................................................	72 
10.5.5	 ADV_INT.2	Well-structured	internals	..................................................................................................	73 
10.5.6	 ADV_INT.3	Minimally	complex	internals	............................................................................................	74 
10.6	 Security	policy	modelling	(ADV_SPM)	.................................................................................................	75 
10.6.1	 Objectives	......................................................................................................................................................	75 
10.6.2	 Component	levelling	..................................................................................................................................	75 
10.6.3	 Application	notes	........................................................................................................................................	76 
10.6.4	 ADV_SPM.1	Formal	TOE	security	policy	model	.................................................................................	77 
10.7	 TOE	design	(ADV_TDS)	..............................................................................................................................	78 
10.7.1	 Objectives	......................................................................................................................................................	78 
10.7.2	 Component	levelling	..................................................................................................................................	79 
10.7.3	 Application	notes	........................................................................................................................................	79 
10.7.4	 ADV_TDS.1	Basic	design	............................................................................................................................	80 
10.7.5	 ADV_TDS.2	Architectural	design	............................................................................................................	81 
10.7.6	 ADV_TDS.3	Basic	modular	design	..........................................................................................................	82 
10.7.7	 ADV_TDS.4	Semiformal	modular	design	.............................................................................................	84 
10.7.8	 ADV_TDS.5	Complete	semiformal	modular	design	.........................................................................	85 
10.7.9	 ADV_TDS.6	Complete	semiformal	modular	design	with	formal	high-level	design	

presentation	.................................................................................................................................................	86 
10.8	 Composite	design	compliance	(ADV_COMP)	......................................................................................	88 
10.8.1	 Objectives	......................................................................................................................................................	88 
10.8.2	 Component	levelling	..................................................................................................................................	88 
10.8.3	 Application	notes	........................................................................................................................................	88 
10.8.4	 ADV_COMP.1Design	compliance	with	the	platform	certification	report,	guidance	and	ETR_COMP	89 

11	 Class	AGD:	Guidance	documents	............................................................................................................	90 
11.1	 Introduction	.................................................................................................................................................	90 
11.2	 Operational	user	guidance	(AGD_OPE)	...............................................................................................	90 
11.2.1	 Objectives	......................................................................................................................................................	90 
11.2.2	 Component	levelling	..................................................................................................................................	91 
11.2.3	 Application	notes	........................................................................................................................................	91 
11.2.4	 AGD_OPE.1	Operational	user	guidance	...............................................................................................	91 
11.3	 Preparative	procedures	(AGD_PRE)	.....................................................................................................	92 
11.3.1	 Objectives	......................................................................................................................................................	92 
11.3.2	 Component	levelling	..................................................................................................................................	92 
11.3.3	 Application	notes	........................................................................................................................................	93 
11.3.4	 AGD_PRE.1	Preparative	procedures	.....................................................................................................	93 

12	 Class	ALC:	Life-cycle	support	..................................................................................................................	94 
12.1	 Introduction	.................................................................................................................................................	94 
12.2	 CM	capabilities	(ALC_CMC)	......................................................................................................................	95 
12.2.1	 Objectives	......................................................................................................................................................	95 
12.2.2	 Component	levelling	..................................................................................................................................	95 
12.2.3	 Application	notes	........................................................................................................................................	95 
12.2.4	 ALC_CMC.1	Labelling	of	the	TOE	.............................................................................................................	96 
12.2.5	 ALC_CMC.2	Use	of	the	CM	system	...........................................................................................................	96 
12.2.6	 ALC_CMC.3	Authorisation	controls	.......................................................................................................	97 
12.2.7	 ALC_CMC.4	Production	support,	acceptance	procedures	and	automation	.............................	99 
12.2.8	 ALC_CMC.5	Advanced	support	..............................................................................................................	101 
12.3	 CM	scope	(ALC_CMS)	................................................................................................................................	104 
12.3.1	 Objectives	....................................................................................................................................................	104 
12.3.2	 Component	levelling	................................................................................................................................	104 



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 vi	
	

	

12.3.3	 Application	notes	......................................................................................................................................	104 
12.3.4	 ALC_CMS.1	TOE	CM	coverage	.................................................................................................................	104 
12.3.5	 ALC_CMS.2	Parts	of	the	TOE	CM	coverage	.........................................................................................	105 
12.3.6	 ALC_CMS.3	Implementation	representation	CM	coverage	..........................................................	106 
12.3.7	 ALC_CMS.4	Problem	tracking	CM	coverage	......................................................................................	107 
12.3.8	 ALC_CMS.5	Development	tools	CM	coverage	...................................................................................	108 
12.4	 Delivery	(ALC_DEL)	..................................................................................................................................	109 
12.4.1	 Objectives	....................................................................................................................................................	109 
12.4.2	 Component	levelling	................................................................................................................................	109 
12.4.3	 Application	notes	......................................................................................................................................	109 
12.4.4	 ALC_DEL.1	Delivery	procedures	...........................................................................................................	110 
12.5	 Developer	environment	security	(ALC_DVS)	...................................................................................	110 
12.5.1	 Objectives	....................................................................................................................................................	110 
12.5.2	 Component	levelling	................................................................................................................................	110 
12.5.3	 Application	notes	......................................................................................................................................	110 
12.5.4	 ALC_DVS.1	Identification	of	security	controls	.................................................................................	111 
12.5.5	 ALC_DVS.2	Sufficiency	of	security	controls	......................................................................................	111 
12.6	 Flaw	remediation	(ALC_FLR)	................................................................................................................	112 
12.6.1	 Objectives	....................................................................................................................................................	112 
12.6.2	 Component	levelling	................................................................................................................................	112 
12.6.3	 Application	notes	......................................................................................................................................	112 
12.6.4	 ALC_FLR.1	Basic	flaw	remediation	......................................................................................................	113 
12.6.5	 ALC_FLR.2	Flaw	reporting	procedures	..............................................................................................	113 
12.6.6	 ALC_FLR.3	Systematic	flaw	remediation	...........................................................................................	115 
12.7	 Development	Life-cycle	definition	(ALC_LCD)	................................................................................	117 
12.7.1	 Objectives	....................................................................................................................................................	117 
12.7.2	 Component	levelling	................................................................................................................................	117 
12.7.3	 Application	notes	......................................................................................................................................	117 
12.7.4	 ALC_LCD.1	Developer	defined	life-cycle	processes	.......................................................................	118 
12.7.5	 ALC_LCD.2	Measurable	life-cycle	model	............................................................................................	118 
12.8	 TOE	Development	Artifacts	(ALC_TDA)	.............................................................................................	119 
12.8.1	 Objectives	....................................................................................................................................................	119 
12.8.2	 Component	levelling	................................................................................................................................	120 
12.8.3	 Application	notes	......................................................................................................................................	120 
12.8.4	 ALC_TDA.1	Uniquely	identifying	implementation	representation	..........................................	120 
12.8.5	 ALC_TDA.2	Matching	CMS	scope	of	implementation	representation	......................................	123 
12.8.6	 ALC_TDA.3	Regenerate	TOE	with	well-defined	development	tools	.........................................	125 
12.9	 Tools	and	techniques	(ALC_TAT)	.........................................................................................................	128 
12.9.1	 Objectives	....................................................................................................................................................	128 
12.9.2	 Component	levelling	................................................................................................................................	128 
12.9.3	 Application	notes	......................................................................................................................................	128 
12.9.4	 ALC_TAT.1	Well-defined	development	tools	...................................................................................	128 
12.9.5	 ALC_TAT.2	Compliance	with	implementation	standards	............................................................	129 
12.9.6	 ALC_TAT.3	Compliance	with	implementation	standards	-	all	parts	........................................	130 
12.10	 Integration	of	composition	parts	and	consistency	check	of	delivery	procedures	

(ALC_COMP)	................................................................................................................................................	131 
12.10.1	...........................................................................................................................................................	Objectives	 131 
12.10.2	......................................................................................................................................	Component	levelling	 131 
12.10.3	.......................................................................................................................................................	ALC_COMP.1	 	Integration	of	the	application	into	the	underlying	platform	and	Consistency	check	for	delivery	and	acceptance	procedures	 131 

13	 Class	ATE:	Tests	.........................................................................................................................................	132 
13.1	 Introduction	...............................................................................................................................................	132 
13.2	 Coverage	(ATE_COV)	................................................................................................................................	133 



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 vii	
	

	

13.2.1	 Objectives	....................................................................................................................................................	133 
13.2.2	 Component	levelling	................................................................................................................................	133 
13.2.3	 Application	notes	......................................................................................................................................	133 
13.2.4	 ATE_COV.1	Evidence	of	coverage	.........................................................................................................	133 
13.2.5	 ATE_COV.2	Analysis	of	coverage	..........................................................................................................	134 
13.2.6	 ATE_COV.3	Rigorous	analysis	of	coverage	........................................................................................	135 
13.3	 Depth	(ATE_DPT)	......................................................................................................................................	135 
13.3.1	 Objectives	....................................................................................................................................................	135 
13.3.2	 Component	levelling	................................................................................................................................	136 
13.3.3	 Application	notes	......................................................................................................................................	136 
13.3.4	 ATE_DPT.1	Testing:	basic	design	.........................................................................................................	136 
13.3.5	 ATE_DPT.2	Testing:	security	enforcing	modules	...........................................................................	137 
13.3.6	 ATE_DPT.3	Testing:	modular	design	..................................................................................................	138 
13.3.7	 ATE_DPT.4	Testing:	implementation	representation	..................................................................	138 
13.4	 Functional	tests	(ATE_FUN)	...................................................................................................................	139 
13.4.1	 Objectives	....................................................................................................................................................	139 
13.4.2	 Component	levelling	................................................................................................................................	140 
13.4.3	 Application	notes	......................................................................................................................................	140 
13.4.4	 ATE_FUN.1	Functional	testing	...............................................................................................................	140 
13.4.5	 ATE_FUN.2	Ordered	functional	testing	..............................................................................................	141 
13.5	 Independent	testing	(ATE_IND)	...........................................................................................................	142 
13.5.1	 Objectives	....................................................................................................................................................	142 
13.5.2	 Component	levelling	................................................................................................................................	142 
13.5.3	 Application	notes	......................................................................................................................................	142 
13.5.4	 ATE_IND.1	Independent	testing	-	conformance	..............................................................................	143 
13.5.5	 ATE_IND.2	Independent	testing	-	sample	.........................................................................................	144 
13.5.6	 ATE_IND.3	Independent	testing	-	complete	.....................................................................................	145 
13.6	 Composite	functional	testing	(ATE_COMP)	......................................................................................	146 
13.6.1	 Objectives	....................................................................................................................................................	146 
13.6.2	 Application	notes	......................................................................................................................................	146 
13.6.3	 ATE_COMP.1	Composite	product	functional	testing	.....................................................................	147 

14	 Class	AVA:	Vulnerability	assessment	.................................................................................................	147 
14.1	 Introduction	...............................................................................................................................................	147 
14.2	 Application	notes	......................................................................................................................................	148 
14.3	 Vulnerability	analysis	(AVA_VAN)	......................................................................................................	148 
14.3.1	 Objectives	....................................................................................................................................................	148 
14.3.2	 Component	levelling	................................................................................................................................	149 
14.3.3	 AVA_VAN.1	Vulnerability	survey	.........................................................................................................	149 
14.3.4	 AVA_VAN.2	Vulnerability	analysis	......................................................................................................	150 
14.3.5	 AVA_VAN.3	Focused	vulnerability	analysis	......................................................................................	151 
14.3.6	 AVA_VAN.4	Methodical	vulnerability	analysis	................................................................................	152 
14.3.7	 AVA_VAN.5	Advanced	methodical	vulnerability	analysis	...........................................................	153 
14.4	 Composite	vulnerability	assessment	(AVA_COMP)	.......................................................................	155 
14.4.1	 Objectives	....................................................................................................................................................	155 
14.4.2	 AVA_COMP.1	Composite	product	vulnerability	assessment	......................................................	155 

15	 Class	ACO:	Composition	..........................................................................................................................	156 
15.1	 Introduction	...............................................................................................................................................	156 
15.2	 Composition	rationale	(ACO_COR)	......................................................................................................	159 
15.2.1	 Objectives	....................................................................................................................................................	159 
15.2.2	 Component	levelling	................................................................................................................................	159 
15.2.3	 ACO_COR.1	Composition	rationale	......................................................................................................	159 
15.3	 Development	evidence	(ACO_DEV)	.....................................................................................................	159 



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 viii	
	

	

15.3.1	 Objectives	....................................................................................................................................................	159 
15.3.2	 Component	levelling	................................................................................................................................	159 
15.3.3	 Application	notes	......................................................................................................................................	160 
15.3.4	 ACO_DEV.1	Functional	Description	.....................................................................................................	160 
15.3.5	 ACO_DEV.2	Basic	evidence	of	design	..................................................................................................	161 
15.3.6	 ACO_DEV.3	Detailed	evidence	of	design	............................................................................................	162 
15.4	 Reliance	of	dependent	component	(ACO_REL)	...............................................................................	163 
15.4.1	 Objectives	....................................................................................................................................................	163 
15.4.2	 Component	levelling	................................................................................................................................	163 
15.4.3	 Application	notes	......................................................................................................................................	163 
15.4.4	 ACO_REL.1	Basic	reliance	information	..............................................................................................	164 
15.4.5	 ACO_REL.2	Reliance	information	.........................................................................................................	164 
15.5	 Composed	TOE	testing	(ACO_CTT)	......................................................................................................	165 
15.5.1	 Objectives	....................................................................................................................................................	165 
15.5.2	 Component	levelling	................................................................................................................................	165 
15.5.3	 Application	notes	......................................................................................................................................	165 
15.5.4	 ACO_CTT.1	Interface	testing	..................................................................................................................	166 
15.5.5	 ACO_CTT.2	Rigorous	interface	testing	...............................................................................................	167 
15.6	 Composition	vulnerability	analysis	(ACO_VUL)	.............................................................................	168 
15.6.1	 Objectives	....................................................................................................................................................	168 
15.6.2	 Component	levelling	................................................................................................................................	168 
15.6.3	 Application	notes	......................................................................................................................................	168 
15.6.4	 ACO_VUL.1	Composition	vulnerability	review	................................................................................	169 
15.6.5	 ACO_VUL.2	Composition	vulnerability	analysis	.............................................................................	170 
15.6.6	 ACO_VUL.3	Enhanced-Basic	Composition	vulnerability	analysis	.............................................	170 

Annex A	(informative)	Development	(ADV)	...................................................................................................	172 
A.1	 ADV_ARC:	Supplementary	material	on	security	architectures	.................................................	172 
A.1.1	 Security	architecture	properties	.........................................................................................................	172 
A.1.2	 Security	architecture	descriptions	.....................................................................................................	173 
A.2	 ADV_FSP:	Supplementary	material	on	functional	specification	...............................................	175 
A.2.1	 Non-TSF	part	of	the	TOE	.........................................................................................................................	176 
A.2.2	 Determining	the	TSFI	..............................................................................................................................	177 
A.2.3	 Example:	A	complex	DBMS	....................................................................................................................	180 
A.2.4	 Example	Functional	Specification	.......................................................................................................	181 
A.3	 ADV_INT:	Supplementary	material	on	TSF	internals	....................................................................	183 
A.3.1	 Structure	of	procedural	software	........................................................................................................	183 
A.3.2	 Complexity	of	procedural	software	....................................................................................................	185 
A.4	 ADV_TDS:	Subsystems	and	Modules	...................................................................................................	186 
A.4.1	 Subsystems	.................................................................................................................................................	186 
A.4.2	 Modules	........................................................................................................................................................	187 
A.4.3	 Levelling	Approach	..................................................................................................................................	189 
A.4.4	 Security	relevance	....................................................................................................................................	191 
A.5	 Supplementary	material	on	formal	methods	..................................................................................	192 

Annex B	(informative)	Composition	(ACO)	.....................................................................................................	194 
B.1	 Necessity	for	composed	TOE	evaluations	.........................................................................................	194 
B.2	 Performing	Security	Target	evaluation	for	a	composed	TOE	....................................................	195 
B.3	 Interactions	between	composed	IT	entities	....................................................................................	196 

Annex C	(informative)	Cross	reference	of	assurance	component	dependencies	..............................	202 

	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 ix	
	

	

Foreword	

To	be	review	by	ISO-Editor	

ISO	 (the	 International	Organization	 for	 Standardization)	 and	 IEC	 (the	 International	 Electrotechnical	
Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are	
members	of	 ISO	or	 IEC	participate	 in	 the	development	of	 International	 Standards	 through	 technical	
committees	 established	 by	 the	 respective	 organization	 to	 deal	 with	 particular	 fields	 of	 technical	
activity.	ISO	and	IEC	technical	committees	collaborate	in	fields	of	mutual	interest.	Other	international	
organizations,	governmental	and	non-governmental,	in	liaison	with	ISO	and	IEC,	also	take	part	in	the	
work.	In	the	field	of	information	technology,	ISO	and	IEC	have	established	a	joint	technical	committee,	
ISO/IEC	JTC	1.	

International	 Standards	 are	 drafted	 in	 accordance	 with	 the	 rules	 given	 in	 the	 ISO/IEC	Directives,	
Part	2.	

The	 main	 task	 of	 the	 joint	 technical	 committee	 is	 to	 prepare	 International	 Standards.	 Draft	
International	Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	for	
voting.	 Publication	 as	 an	 International	 Standard	 requires	 approval	 by	 at	 least	 75	%	 of	 the	 national	
bodies	casting	a	vote.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	

ISO/IEC	15408-3	was	prepared	by	 Joint	Technical	Committee	 ISO/IEC	JTC	1,	 Information	 technology,	
Subcommittee	SC	27,	Information	security,	cybersecurity	and	privacy	protection.	

This	 fourth	 edition	 cancels	 and	 replaces	 the	 third	 edition	 (ISO/IEC	15408-3:2008),	which	 has	 been	
technically	revised.	

A	list	of	all	parts	in	the	ISO/IEC	15408	series	can	be	found	on	the	ISO	website.	This	corrected	version	
of	ISO/IEC	15408-3:XXXX	incorporates	miscellaneous	editorial	corrections	mainly	related	to	EAL4	and	
EAL6	assurance	components,	ADV_FSP,	ADV_TDS,	ATE_DPT.2,	ATE_IND,	and	ALC.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 x	
	

	

Legal	Notice	

The	 governmental	 organizations	 listed	 below	 contributed	 to	 the	 development	 of	 this	 version	 of	 the	
Common	 Criteria	 for	 Information	 Technology	 Security	 Evaluations.	 As	 the	 joint	 holders	 of	 the	
copyright	in	the	Common	Criteria	for	Information	Technology	Security	Evaluations,	version	3.1	Parts	1	
through	 3	 (called	 CC	 3.1),	 they	 hereby	 grant	 non-exclusive	 license	 to	 ISO/IEC	 to	 use	 CC	 3.1	 in	 the	
continued	 development/maintenance	 of	 the	 ISO/IEC	 15408	 series	 international	 standard.	However,	
these	governmental	organizations	retain	the	right	to	use,	copy,	distribute,	translate	or	modify	CC	3.1	as	
they	see	fit.	

Australia/New	Zealand:	 The	Defence	Signals	Directorate	and	the	Government	Communications	
Security	Bureau	respectively;	

Canada:	 Communications	Security	Establishment;	

France:	 Agence	nationale	de	la	sécurité	des	systèmes	d’information	(ANSSI);	

Germany:	 Bundesamt	für	Sicherheit	in	der	Informationstechnik;	

Japan:	 Information	Technology	Promotion	Agency;	

Netherlands:	 Netherlands	National	Communications	Security	Agency;	

Spain:	 Ministerio	de	Administraciones	Públicas	and	Centro	Criptológico	
Nacional;	

United	Kingdom:	 Communications-Electronic	Security	Group;	

United	States:	 The	National	Security	Agency	and	the	National	Institute	of	Standards	
andTechnology.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 xi	
	

	

Introduction	

Security	assurance	components,	as	defined	in	this	document,	are	the	basis	for	the	security	assurance	
requirements	expressed	in	a	Security	Assurance	Package,	Protection	Profile	(PP),	a	PP-Module,	a	PP-
Configuration,	or	a	Security	Target	(ST).	

These	requirements	establish	a	standard	way	of	expressing	the	assurance	requirements	for	TOEs.	This	
document	catalogues	the	set	of	assurance	components,	families	and	classes.	It	also	defines	evaluation	
criteria	for	PPs,	PP-Configurations,	PP-Modules,	Packages	and	STs.	

The	audience	for	this	document	includes	consumers,	developers,	technical	working	groups,	evaluators	
of	secure	IT	products	and	others.	ISO/IEC	15408-1:XXXX,	Clause	5	provides	additional	information	on	
the	 target	audience	of	 the	 ISO/IEC	15408	series,	 and	on	 the	use	of	 the	 ISO/IEC	15408	series	by	 the	
groups	that	comprise	the	target	audience.	These	groups	may	use	this	document	as	follows:	

a)	 Consumers,	 who	 use	 this	 document	 when	 selecting	 components	 to	 express	 assurance	
requirements	 to	 satisfy	 the	 security	 objectives	 expressed	 in	 a	 PP	 or	 ST,	 determining	 required	
levels	of	security	assurance	of	the	TOE.	

b)	 Developers,	who	respond	to	actual	or	perceived	consumer	security	requirements	in	constructing	a	
TOE,	 reference	 this	 document	 when	 interpreting	 statements	 of	 assurance	 requirements	 and	
determining	assurance	approaches	of	TOEs.	

c)	 Evaluators,	 who	 use	 the	 assurance	 requirements	 defined	 in	 this	 document	 as	 a	 mandatory	
statement	 of	 evaluation	 criteria	when	 determining	 the	 assurance	 of	 TOEs	 and	when	 evaluating	
PPs	and	STs.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 1	
	

	

Information	security,	cybersecurity	and	privacy	protection	—	
Evaluation	criteria	for	IT	security	—	Part	3:	Security	assurance	
components	

1 Scope	

This	 document	 defines	 the	 assurance	 requirements	 of	 the	 ISO/IEC	 15408	 series.	 It	 includes	 the	
individual	 assurance	 components	 from	 which	 the	 evaluation	 assurance	 levels	 and	 other	 packages	
contained	 in	 ISO/IEC	 15408-5	 are	 composed,	 and	 the	 criteria	 for	 evaluation	 of	 Protection	 Profiles	
(PPs),	PP-Configurations,	PP-Modules,	and	Security	Targets	(STs).	

2 Normative	references	

The	 following	documents	 are	 referred	 to	 in	 the	 text	 in	 such	a	way	 that	 some	or	 all	 of	 their	 content	
constitutes	 requirements	 of	 this	 document.	 For	dated	 references,	 only	 the	 edition	 cited	 applies.	 For	
undated	 references,	 the	 latest	 edition	 of	 the	 referenced	 document	 (including	 any	 amendments)	
applies..	

ISO/IEC	15408-1,	Information	security	—	Evaluation	criteria	for	IT	security	—	Part	1:	Introduction	and	
general	model	

ISO/IEC	15408-2,	 Information	 security	 —	 Evaluation	 criteria	 for	 IT	 security	 —	 Part	2:	 Security	
functional	components	

ISO/IEC	15408-5,	 Information	 security	 —	 Evaluation	 criteria	 for	 IT	 security	—	 Part	5:	 Pre-defined	
packages	of	security	requirements	

3 Terms	and	definitions,	symbols	and	abbreviated	terms	

For	 the	 purposes	 of	 this	 document,	 the	 terms,	 definitions,	 symbols	 and	 abbreviated	 terms	 given	 in	
ISO/IEC	15408-1	apply.	

4 Overview	

Clause	5	describes	the	paradigm	used	in	the	security	assurance	requirements	of	this	document.	

Clause	6	 describes	 the	 presentation	 structure	 of	 the	 assurance	 classes,	 families,	 components,	
evaluation	 assurance	 levels	 along	 with	 their	 relationships,	 and	 the	 structure	 of	 the	 composed	
assurance	packages.	It	also	characterizes	the	assurance	classes	and	families	found	in	Clauses	7	through	
15.	

Clauses	7	through	15	provide	the	detailed	definitions	of	this	document	assurance	classes.	

Annex	A	provides	further	explanations	and	examples	of	the	concepts	behind	the	Development	class.	

Annex	B	 provides	 an	 explanation	 of	 the	 concepts	 behind	 composed	 TOE	 evaluations	 and	 the	
Composition	class.	

Annex	C	provides	a	summary	of	the	dependencies	between	the	assurance	components.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 2	
	

	

5 Assurance	paradigm	

5.1 Introduction	

The	 purpose	 of	 Clause	5	 is	 to	 document	 the	 philosophy	 that	 underpins	 the	 ISO/IEC	 15408	 series	
approach	 to	 assurance.	 An	 understanding	 of	 Clause	5	 will	 permit	 the	 reader	 to	 understand	 the	
rationale	behind	this	document	assurance	requirements.	
5.2 ISO/IEC	15408	philosophy	

The	ISO/IEC	15408	series	philosophy	is	that	the	threats	to	security	and	organisational	security	policy	
commitments	 should	 be	 clearly	 articulated	 and	 the	 proposed	 security	 controls	 be	 demonstrably	
sufficient	for	their	intended	purpose.	

Furthermore,	measures	should	be	adopted	that	reduce	the	likelihood	of	vulnerabilities,	the	ability	to	
exercise	 (i.e.	 intentionally	 exploit	 or	 unintentionally	 trigger)	 a	 vulnerability,	 and	 the	 extent	 of	 the	
damage	 that	 could	 occur	 from	 a	 vulnerability	 being	 exercised.	 Additionally,	 measures	 should	 be	
adopted	that	facilitate	the	subsequent	identification	of	vulnerabilities	and	the	elimination,	mitigation,	
and/or	notification	that	a	vulnerability	has	been	exploited	or	triggered.	

5.3 Assurance	approach	

5.3.1 Introduction	

The	 ISO/IEC	 15408	 series	 philosophy	 is	 to	 provide	 assurance	 based	 upon	 an	 evaluation	 of	 the	 IT	
product	that	is	to	be	trusted.	Evaluation	has	been	the	traditional	means	of	providing	assurance	and	is	
the	 basis	 for	 prior	 evaluation	 criteria	 documents.	 In	 aligning	 the	 existing	 approaches,	 the	 ISO/IEC	
15408	series	adopts	the	same	philosophy.	The	ISO/IEC	15408	series	proposes	measuring	the	validity	
of	the	documentation	and	of	the	resulting	IT	product	by	expert	evaluators	with	increasing	emphasis	on	
scope,	depth,	and	rigour.	

The	 ISO/IEC	15408	series	does	not	exclude,	nor	does	 it	 comment	upon,	 the	 relative	merits	of	other	
means	of	gaining	assurance.	Research	continues	with	respect	to	alternative	ways	of	gaining	assurance.	
As	mature	alternative	approaches	emerge	 from	these	research	activities,	 they	will	be	considered	 for	
inclusion	in	the	ISO/IEC	15408	series,	which	is	so	structured	as	to	allow	their	future	introduction.	
5.3.2 Significance	of	vulnerabilities	

It	 is	 assumed	 that	 there	 are	 threat	 agents	 that	will	 actively	 seek	 to	 exploit	 opportunities	 to	 violate	
security	policies	both	for	illicit	gains	and	for	well-intentioned,	but	nonetheless	insecure	actions.	Threat	
agents	may	also	accidentally	trigger	security	vulnerabilities,	causing	harm	to	the	organization.	Due	to	
the	need	to	process	sensitive	information	and	the	lack	of	availability	of	sufficiently	trusted	products,	
there	is	significant	risk	due	to	failures	of	IT.	It	is,	therefore,	likely	that	IT	security	breaches	could	lead	
to	significant	loss.	

IT	 security	 breaches	 arise	 through	 the	 intentional	 exploitation	 or	 the	 unintentional	 triggering	 of	
vulnerabilities	in	the	application	of	IT	within	business	concerns.	

Steps	 should	 be	 taken	 to	 prevent	 vulnerabilities	 arising	 in	 IT	 products.	 To	 the	 extent	 feasible,	
vulnerabilities	should	be:	

a)	 eliminated	 -	 that	 is,	 active	 steps	 should	 be	 taken	 to	 expose,	 and	 remove	 or	 neutralize,	 all	
exercisable	vulnerabilities;	

b)	 minimised	 -	 that	 is,	 active	 steps	 should	 be	 taken	 to	 reduce,	 to	 an	 acceptable	 residual	 level,	 the	
potential	impact	of	any	exercise	of	a	vulnerability;	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 3	
	

	

c)	 monitored	-	that	is,	active	steps	should	be	taken	to	ensure	that	any	attempt	to	exercise	a	residual	
vulnerability	will	be	detected	so	that	steps	can	be	taken	to	limit	the	damage.	

5.3.3 Cause	of	vulnerabilities	

Vulnerabilities	can	arise	through	failures	in:	

a)	 requirements	–	that	is,	an	IT	product	may	possess	all	the	functions	and	features	required	of	it	and	
still	contain	vulnerabilities	that	render	it	unsuitable	or	ineffective	with	respect	to	security;	

b)	 design	 –	 that	 is,	 an	 IT	product	 has	 been	poorly	designed.	Building	 a	 secure	product,	 system,	 or	
application	 requires	 not	 only	 the	 implementation	 of	 functional	 requirements	 but	 also	 an	
architecture	that	allows	for	the	effective	enforcement	of	specific	security	properties	the	product,	
system,	or	application	is	supposed	to	enforce.	The	ability	to	withstand	attacks	the	product,	system,	
or	 application	may	 be	 face	 in	 its	 intended	 operational	 environment	 is	 highly	 dependent	 on	 an	
architecture	that	prohibits	those	attacks	or	–	if	they	cannot	be	prohibited	–	allows	for	detection	of	
such	attacks	and/or	limitation	of	the	damage	such	an	attack	can	cause;	

c)	 development	–	that	is,	an	IT	product	does	not	meet	its	specifications	and/or	vulnerabilities	have	
been	introduced	as	a	result	of	poor	development	standards	or	incorrect	design	choices;	

d)	 delivery,	 installation	 and	 configuration	 –	 that	 is,	 an	 IT	 product	 has	 vulnerabilities	 introduced	
during	the	delivery,	installation	and	configuration	of	the	product;	

e)	 operation	 –	 that	 is,	 an	 IT	 product	 has	 been	 constructed	 correctly	 to	 a	 correct	 specification,	 but	
vulnerabilities	have	been	introduced	as	a	result	of	inadequate	controls	upon	the	operation.	

f)	 maintenance	 –	 that	 is,	 an	 IT	 product	 is	 maintained	 in	 such	 a	 way	 that	 new	 vulnerabilities	 are	
introduced.	

5.3.4 ISO/IEC	15408	series	assurance	

Assurance	can	be	derived	from	reference	to	sources	such	as	unsubstantiated	assertions,	prior	relevant	
experience,	 or	 specific	 experience.	 However,	 the	 ISO/IEC	 15408	 series	 provides	 assurance	 through	
active	investigation	or	a	specification	based	approach	too.	Active	investigation	is	an	evaluation	of	the	
IT	product	in	order	to	determine	its	security	properties.	
5.3.5 Assurance	through	evaluation	

Evaluation	has	been	the	traditional	means	of	gaining	assurance,	and	is	the	basis	of	the	ISO/IEC	15408	
series	approach.	Evaluation	techniques	can	include,	but	are	not	limited	to:	

a)	 analysis	and	checking	of	process(es)	and	procedure(s);	

b)	 checking	that	process(es)	and	procedure(s)	are	being	applied;	

c)	 analysis	of	the	correspondence	between	TOE	design	representations;	

d)	 analysis	of	the	TOE	design	representation	against	the	requirements;	

e)	 verification	of	proofs;	

f)	 analysis	of	guidance	documents;	

g)	 analysis	of	functional	tests	developed	and	the	results	provided;	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 4	
	

	

h)	 independent	functional	testing;	

i)	 analysis	for	vulnerabilities	(including	flaw	hypotheses);	

j)	 penetration	testing;	

k)	 analysis	of	the	delivery	process;	

l)	 analysis	of	the	maintenance	process.	

5.4 ISO/IEC	15408	series	evaluation	assurance	scale	

The	 ISO/IEC	15408	 series	 philosophy	 asserts	 that	 greater	 assurance	 results	 from	 the	 application	 of	
greater	 evaluation	 effort,	 and	 that	 the	 goal	 is	 to	 apply	 the	minimum	 effort	 required	 to	 provide	 the	
necessary	assurance.	The	increasing	level	of	effort	is	based	upon:	

a)	 scope	–	that	is,	the	effort	is	greater	because	a	larger	portion	of	the	IT	product	is	included;	

b)	 depth	 –	 that	 is,	 the	 effort	 is	 greater	 because	 it	 is	 deployed	 to	 a	 finer	 level	 of	 design	 and	
implementation	detail;	

c)	 rigour	–	that	is,	the	effort	is	greater	because	it	is	applied	in	a	more	structured,	formal	manner.	

6 Security	assurance	components	

6.1 Introduction	

The	subclauses	6.2	to	6.6	describe	the	constructs	used	in	representing	the	assurance	classes,	families,	
and	components.	

Figure	1	 illustrates	 the	 security	 assurance	 requirements	 (SARs)	defined	 in	 this	document.	Note	 that	
the	most	abstract	collection	of	SARs	 is	 referred	 to	as	a	class.	Each	class	contains	assurance	 families,	
which	 then	 contain	 assurance	 components,	 which	 in	 turn	 contain	 assurance	 elements.	 Classes	 and	
families	are	used	 to	provide	a	 taxonomy	 for	 classifying	SARs,	while	 components	are	used	 to	 specify	
SARs	in	a	PP/ST.	
6.2 Assurance	class	structure	

Figure	1	illustrates	the	assurance	class	structure.	
6.2.1 Class	name	

Each	 assurance	 class	 is	 assigned	 a	 unique	 name.	 The	 name	 indicates	 the	 topics	 covered	 by	 the	
assurance	class.	

A	 unique	 short	 form	 of	 the	 assurance	 class	 name	 is	 also	 provided.	 This	 is	 the	 primary	 means	 for	
referencing	the	assurance	class.	The	convention	adopted	 is	an	“A”	 followed	by	two	 letters	related	to	
the	class	name.	
6.2.2 Class	introduction	

Each	assurance	 class	has	 an	 introductory	 subclause	 that	describes	 the	 composition	of	 the	 class	 and	
contains	supportive	text	covering	the	intent	of	the	class.	
6.2.3 Assurance	families	

Each	assurance	class	contains	at	least	one	assurance	family.	The	structure	of	the	assurance	families	is	
described	in	the	following	subclause.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 5	
	

	

Figure	1	illustrates	the	assurance	family	structure.	

	

Figure	1	—	Assurance	class/family/component/element	hierarchy	

6.3 Assurance	family	structure	

6.3.1 Family	name	

Every	assurance	family	is	assigned	a	unique	name.	The	name	provides	descriptive	information	about	
the	topics	covered	by	the	assurance	family.	Each	assurance	family	is	placed	within	the	assurance	class	
that	contains	other	families	with	the	same	intent.	

A	unique	short	form	of	the	assurance	family	name	is	also	provided.	This	is	the	primary	means	used	to	
reference	 the	 assurance	 family.	 The	 convention	 adopted	 is	 that	 the	 short	 form	of	 the	 class	 name	 is	
used,	followed	by	an	underscore,	and	then	three	letters	related	to	the	family	name.	
6.3.2 Objectives	

The	objectives	subclause	of	the	assurance	family	presents	the	intent	of	the	assurance	family.	

This	 subclause	 describes	 the	 objectives,	 particularly	 those	 related	 to	 the	 ISO/IEC	15408	 series	
assurance	paradigm,	that	the	family	is	intended	to	address.	The	description	for	the	assurance	family	is	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 6	
	

	

kept	at	a	general	 level.	Any	specific	details	required	for	objectives	are	incorporated	in	the	particular	
assurance	component.	
6.3.3 Component	levelling	

Each	assurance	family	contains	one	or	more	assurance	components.	This	subclause	of	the	assurance	
family	 describes	 the	 components	 available	 and	 explains	 the	 distinctions	 between	 them.	 Its	 main	
purpose	 is	 to	differentiate	between	the	assurance	components	once	 it	has	been	determined	that	 the	
assurance	family	is	a	necessary	or	useful	part	of	the	SARs	for	a	PP/ST.	

Assurance	families	containing	more	than	one	component	are	levelled	and	rationale	is	provided	as	to	
how	the	components	are	levelled.	This	rationale	is	in	terms	of	scope,	depth,	and/or	rigour.	
6.3.4 Application	notes	

The	application	notes	subclause	of	the	assurance	family,	if	present,	contains	additional	information	for	
the	assurance	family.	This	information	should	be	of	particular	interest	to	users	of	the	assurance	family	
(e.g.	PP	and	ST	authors,	designers	of	TOEs,	evaluators).	The	presentation	 is	 informal	and	covers,	 for	
example,	warnings	about	limitations	of	use	and	areas	where	specific	attention	may	be	required.	
6.3.5 Assurance	components	

Each	 assurance	 family	 has	 at	 least	 one	 assurance	 component.	 The	 structure	 of	 the	 assurance	
components	is	provided	in	the	following	subclause.	

6.4 Assurance	component	structure	

6.4.1 Introduction	

Figure	2	illustrates	the	assurance	component	structure.	

	

Figure	2	—	Assurance	component	structure	

The	relationship	between	components	within	a	family	is	highlighted	using	a	bolding	convention.	Those	
parts	 of	 the	 requirements	 that	 are	 new,	 enhanced	 or	 modified	 beyond	 the	 requirements	 of	 the	
previous	component	within	a	hierarchy	are	bolded.	
6.4.2 Component	identification	

The	 component	 identification	 subclause	 provides	 descriptive	 information	 necessary	 to	 identify,	
categorize,	register,	and	reference	a	component.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 7	
	

	

Every	assurance	 component	 is	 assigned	a	unique	name.	The	name	provides	descriptive	 information	
about	the	topics	covered	by	the	assurance	component.	Each	assurance	component	is	placed	within	the	
assurance	family	that	shares	its	security	objective.	

A	unique	 short	 form	of	 the	assurance	component	name	 is	also	provided.	This	 is	 the	primary	means	
used	to	reference	the	assurance	component.	The	convention	used	is	that	the	short	form	of	the	family	
name	 is	 used,	 followed	 by	 a	 period,	 and	 then	 a	 numeric	 character.	 The	 numeric	 characters	 for	 the	
components	within	each	family	are	assigned	sequentially,	starting	from	1.	
6.4.3 Objectives	

The	objectives	subclause	of	 the	assurance	component,	 if	present,	 contains	specific	objectives	 for	 the	
particular	assurance	component.	For	those	assurance	components	that	have	this	subclause,	it	presents	
the	specific	intent	of	the	component	and	a	more	detailed	explanation	of	the	objectives.	
6.4.4 Application	notes	

The	 application	 notes	 subclause	 of	 an	 assurance	 component,	 if	 present,	 contains	 additional	
information	to	facilitate	the	use	of	the	component.	
6.4.5 Dependencies	

Dependencies	among	assurance	components	arise	when	a	component	is	not	self-sufficient,	and	relies	
upon	the	presence	of	another	component.	

Each	assurance	component	provides	a	complete	list	of	dependencies	to	other	assurance	components.	
Some	components	may	list	“No	dependencies”,	to	indicate	that	no	dependencies	have	been	identified.	
The	components	depended	upon	may	have	dependencies	on	other	components.	

The	 dependency	 list	 identifies	 the	 minimum	 set	 of	 assurance	 components	 which	 are	 relied	 upon.	
Components	which	are	hierarchical	to	a	component	in	the	dependency	list	may	also	be	used	to	satisfy	
the	dependency.	

In	 specific	 situations	 the	 indicated	 dependencies	 might	 not	 be	 applicable.	 The	 PP,	 PP-Module,	 PP-
Configuration	or	ST	author,	by	providing	rationale	for	why	a	given	dependency	is	not	applicable,	may	
elect	not	to	satisfy	that	dependency.	
6.4.6 Assurance	elements	

A	 set	 of	 assurance	 elements	 is	 provided	 for	 each	 assurance	 component.	 An	 assurance	 element	 is	 a	
security	requirement	which,	if	further	divided,	would	not	yield	a	meaningful	evaluation	result.	It	is	the	
smallest	security	requirement	recognized	in	the	ISO/IEC	15408	series.	

Each	assurance	element	is	identified	as	belonging	to	one	of	the	three	sets	of	assurance	elements:	

a)	 Developer	 action	 elements:	 the	 activities	 that	 shall	 be	 performed	 by	 the	 developer.	 This	 set	 of	
actions	 is	 further	 qualified	 by	 evidential	 material	 referenced	 in	 the	 following	 set	 of	 elements.	
Requirements	 for	 developer	 actions	 are	 identified	 by	 appending	 the	 letter	 “D”	 to	 the	 element	
number.	

b)	 Content	 and	presentation	 of	 evidence	 elements:	 the	 evidence	 required,	what	 the	 evidence	 shall	
demonstrate,	 and	 what	 information	 the	 evidence	 shall	 convey.	 Requirements	 for	 content	 and	
presentation	of	evidence	are	identified	by	appending	the	letter	“C”	to	the	element	number.	

c)	 Evaluator	 action	 elements:	 the	 activities	 that	 shall	 be	 performed	 by	 the	 evaluator.	 This	 set	 of	
actions	 explicitly	 includes	 confirmation	 that	 the	 requirements	 prescribed	 in	 the	 content	 and	
presentation	of	evidence	elements	have	been	met.	It	also	includes	explicit	actions	and	analysis	that	
shall	 be	 performed	 in	 addition	 to	 that	 already	 performed	 by	 the	 developer.	 Implicit	 evaluator	
actions	are	also	to	be	performed	as	a	result	of	developer	action	elements	which	are	not	covered	by	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 8	
	

	

content	 and	 presentation	 of	 evidence	 requirements.	 Requirements	 for	 evaluator	 actions	 are	
identified	by	appending	the	letter	“E”	to	the	element	number.	

The	developer	actions	and	content	and	presentation	of	 evidence	define	 the	assurance	 requirements	
that	 are	 used	 to	 represent	 a	 developer's	 responsibilities	 in	 demonstrating	 assurance	 in	 the	 TOE	
meeting	the	SFRs	of	a	PP,	PP-Module,	PP-Configuration	or	ST.	

The	 evaluator	 actions	 define	 the	 evaluator's	 responsibilities	 in	 two	 aspects	 of	 evaluation.	 The	 first	
aspect	 is	validation	of	 the	applicable	PP,	PP-Module,	PP-Configuration	or	ST,	 in	accordance	with	 the	
classes	 ACE,	 APE	 and	 ASE	 in	 Clauses,	 ACE:	 ACE:	 Protection	 Profile	 Configuration	 evaluation,	 APE:	
Protection	Profile	evaluation	and	ASE:	Security	Target	evaluation.	The	second	aspect	is	verification	of	
the	 TOE's	 conformance	 with	 its	 SFRs	 and	 SARs.	 By	 demonstrating	 that	 the	 PP,	 PP-Module,	 PP-
Configuration	or	ST	is	valid	and	that	the	requirements	are	met	by	the	TOE,	the	evaluator	can	provide	a	
basis	for	confidence	that	the	TOE	in	its	operational	environment	solves	the	defined	security	problem.	

The	developer	action	elements,	content	and	presentation	of	evidence	elements,	and	explicit	evaluator	
action	elements,	 identify	 the	evaluator	effort	 that	 shall	be	expended	 in	verifying	 the	 security	 claims	
made	in	the	ST	of	the	TOE.	

6.5 Assurance	elements	

Each	element	represents	a	requirement	to	be	met.	These	statements	of	requirements	are	intended	to	
be	 clear,	 concise,	 and	 unambiguous.	 Therefore,	 there	 are	 no	 compound	 sentences:	 each	 separable	
requirement	is	stated	as	an	individual	element.	

6.6 Component	taxonomy	

This	document	contains	classes	of	 families	and	components	that	are	grouped	on	the	basis	of	related	
assurance.	 At	 the	 start	 of	 each	 class	 is	 a	 diagram	 that	 indicates	 the	 families	 in	 the	 class	 and	 the	
components	in	each	family.	

	

Figure	3	—	Sample	class	decomposition	diagram	

In	Figure	3,	above,	the	class	as	shown	contains	a	single	family.	The	family	contains	three	components	
that	are	linearly	hierarchical	(i.e.	component	2	requires	more	than	component	1,	 in	terms	of	specific	
actions,	 specific	 evidence,	 or	 rigour	 of	 the	 actions	 or	 evidence).	 The	 assurance	 families	 in	 this	
document	 are	 all	 linearly	hierarchical,	 although	 linearity	 is	not	 a	mandatory	 criterion	 for	 assurance	
families	that	may	be	added	in	the	future.	

7 Class	APE:	Protection	Profile	evaluation	

7.1 Introduction	

Evaluating	a	PP	is	required	to	demonstrate	that	the	PP	is	sound	and	internally	consistent,	and,	if	the	PP	
is	based	on	one	or	more	other	PPs	or	on	packages,	that	the	PP	is	a	correct	instantiation	of	these	PPs	
and	packages.	These	properties	are	necessary	for	the	PP	to	be	suitable	for	use	as	the	basis	for	writing	
an	ST	or	another	PP.	

Clause	7	 should	be	used	 in	 conjunction	with	Annexes	A,	B	 and	C	 in	 ISO/IEC	15408-1:2009,	 as	 these	
annexes	clarify	the	concepts	here	and	provide	many	examples.	

Figure	4	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 9	
	

	

	

Figure	4	—	APE:	Protection	Profile	evaluation	class	decomposition	

7.2 PP	introduction	(APE_INT)	

7.2.1 Objectives	

The	objective	of	this	family	is	to	describe	the	TOE	in	a	narrative	way.	

Evaluation	of	 the	PP	 introduction	 is	 required	 to	demonstrate	 that	 the	PP	 is	 correctly	 identified,	and	
that	the	PP	reference	and	TOE	overview	are	consistent	with	each	other.	
7.2.2 APE_INT.1	PP	introduction	

Dependencies:	No	dependencies.	

Developer	action	elements	

APE_INT.1.1D	

The	developer	shall	provide	a	PP	introduction.	

Content	and	presentation	elements	

APE_INT.1.1C	

The	PP	introduction	shall	contain	a	PP	reference	and	a	TOE	overview.	

APE_INT.1.2C	

The	PP	reference	shall	uniquely	identify	the	PP.	

APE_INT.1.3C	

The	TOE	overview	shall	summarize	the	usage	and	major	security	features	of	the	TOE.	

APE_INT.1.4C	

The	TOE	overview	shall	identify	the	TOE	type.	

APE_INT.1.5C	

The	 TOE	 overview	 shall	 identify	 any	 non-TOE	 hardware/software/firmware	 available	 to	 the	
TOE.	

Evaluator	action	elements	

APE_INT.1.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 10	
	

	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

7.3 Conformance	claims	(APE_CCL)	

7.3.1 Objectives	

The	 objective	 of	 this	 family	 is	 to	 determine	 the	 validity	 of	 the	 conformance	 claim.	 In	 addition,	 this	
family	specifies	how	STs	and	other	PPs	are	to	claim	conformance	with	the	PP.	
7.3.2 APE_CCL.1	Conformance	claims	

Dependencies:	 APE_INT.1	PP	introduction	

	 APE_ECD.1	Extended	components	definition	

	 APE_REQ.1	Direct	rationale	PP-Module	security	requirements	
Developer	action	elements	

APE_CCL.1.1D	

The	developer	shall	provide	a	conformance	claim.	

APE_CCL.1.2D	

The	developer	shall	provide	a	conformance	claim	rationale.	

APE_CCL.1.3D	

The	developer	shall	provide	a	conformance	statement.	

Content	and	presentation	elements	

APE_CCL.1.1C	

The	 conformance	 claim	 shall	 identify	 the	 ISO/IEC	15408	 edition	 to	 which	 the	 PP	 claims	
conformance.	

APE_CCL.1.2C	

The	conformance	claim	shall	describe	the	conformance	of	the	PP	to	ISO/IEC	15408-2	as	either	
ISO/IEC	15408-2	conformant	or	ISO/IEC	15408-2	extended.	

APE_CCL.1.3C	

The	 conformance	 claim	 shall	 describe	 the	 conformance	of	 the	PP	 as	 either	 “ISO/IEC	15408-3	
conformant”	or	“ISO/IEC	15408-3	extended”.”	

APE_CCL.1.4C	

The	conformance	claim	shall	be	consistent	with	the	extended	components	definition.	

APE_CCL.1.5C	

The	 conformance	 claim	 shall	 identify	 all	 PPs,	 PP-Configurations	 and	 functional	 packages	 to	
which	the	PP	claims	conformance.	

APE_CCL.1.6C	

The	conformance	claim	shall	describe	any	conformance	of	the	PP	to	a	functional	package	as	one	
of	package-conformant,	package-augmented,	or	package-tailored.	

APE_CCL.1.7C	

The	conformance	claim	shall	describe	any	conformance	of	 the	PP	to	an	assurance	package	as	
either	package-conformant	or	package-augmented.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 11	
	

	

APE_CCL.1.8C		

The	 conformance	 claim	 shall	 describe	 any	 conformance	 of	 the	 PP	 to	 another	 PP	 as	 PP	
Conformant.	

APE_CCL.1.8C9C	

The	 conformance	 claim	 rationale	 shall	 demonstrate	 that	 the	TOE	 type	 is	 consistent	with	 the	
TOE	type	in	the	PP(s)	or	PP-Configurations	forto	which	conformance	is	being	claimed.	

APE_CCL.1.9C10C	

The	conformance	claim	rationale	shall	demonstrate	that	the	statement	of	the	security	problem	
definition	 is	 consistent	 with	 the	 statement	 of	 the	 security	 problem	 definition	 in	 the	 PP-
Configuration,	PPs	and	any	functional	packages	for	which	conformance	is	being	claimed..	

APE_CCL.1.10C11C	

The	conformance	claim	rationale	shall	demonstrate	that	the	statement	of	security	objectives	is	
consistent	 with	 the	 statement	 of	 security	 objectives	 in	 the	 PP-Configuration,	 PPs	 and	 any	
functional	packages	for	which	conformance	is	being	claimed.	

APE_CCL.1.11C12C	

The	 conformance	 claim	 rationale	 shall	 demonstrate	 that	 the	 statement	 of	 security	
requirements	 is	 consistent	 with	 the	 statement	 of	 security	 requirements	 in	 the	 PP-
Configuration,	PPs	and	any	functional	packages	for	which	conformance	is	being	claimed.	

APE_CCL.1.12C13C	

The	conformance	statement	shall	describe	the	conformance	required	of	any	PPs/STs	to	the	PP	
as	one	of	exact,	strict,	or	demonstrable	conformance.The	conformance	statement	shall	describe	
the	conformance	required	of	any	PPs/STs	to	the	PP	as	exact-PP,	strict-PP,	or	demonstrable-PP	
conformance.	

	

APE_CCL.1.13C14C	

For	 an	 exact	 conformance	 PP,	 the	 conformance	 statement	 shall	 contain	 an	 allowed-with	
statement	 that	 identifies	 the	 set	 of	 PPs	 (if	 any)	 to	which,	 in	 combination	with	 the	 PP	 under	
evaluation,	exact	conformance	is	allowed	to	be	claimed.	

APE_CCL.1.14C15C	

For	 an	 exact	 conformance	 PP,	 the	 conformance	 statement	 shall	 contain	 an	 allowed-with	
statement	that	identifies	the	set	of	PP-Modules	(if	any)	that	are	allowed	to	be	used	with	the	PP	
under	evaluation	in	a	PP-Configuration.	

APE_CCL.1.15C16C	

The	 conformance	 statement	 shall	 identify	 the	 set	 of	 derived	 Evaluation	Methods	 Evaluation	
methods	and	Evaluation	Activities	Evaluation	activities	(if	any)	that	shall	be	used	with	the	PP	
under	evaluation.	This	list	shall	contain:	

—	 any	Evaluation	Methods	Evaluation	methods	and	Evaluation	Activities	Evaluation	activities	
that	are	specified	for	the	PP	under	evaluation	

—	 any	Evaluation	Methods	Evaluation	methods	and	Evaluation	Activities	Evaluation	activities	
specified	in	conformance	statements	of	PPs	to	which	conformance	is	being	claimed	by	the	
PP	under	evaluation	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 12	
	

	

—	 any	Evaluation	Methods	Evaluation	method	sand	Evaluation	Activities	Evaluation	activities	
specified	in	the	Security	Requirements	sections	of	packages	to	which	conformance	is	being	
claimed	by	the	PP	under	evaluation.	

Evaluator	action	elements	

APE_CCL.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

7.4 Security	problem	definition	(APE_SPD)	

7.4.1 Objectives	

This	 part	 of	 the	 PP	 defines	 the	 security	 problem	 to	 be	 addressed	 by	 the	 TOE	 and	 the	 operational	
environment	of	the	TOE.	

Evaluation	 of	 the	 security	 problem	 definition	 is	 required	 to	 demonstrate	 that	 the	 security	 problem	
intended	to	be	addressed	by	the	TOE	and	its	operational	environment,	is	clearly	defined.	
7.4.2 APE_SPD.1	Security	problem	definition	

Dependencies:	 No	dependencies.	

Developer	action	elements	

APE_SPD.1.1D	

The	developer	shall	provide	a	security	problem	definition.	

Content	and	presentation	elements	

APE_SPD.1.1C	

The	security	problem	definition	shall	describe	the	threats.	

APE_SPD.1.2C	

All	threats	shall	be	described	in	terms	of	a	threat	agent,	an	asset,	and	an	adverse	action.	

APE_SPD.1.3C	

The	security	problem	definition	shall	describe	the	OSPs.	

APE_SPD.1.4C	

The	 security	 problem	 definition	 shall	 describe	 the	 assumptions	 about	 the	 operational	
environment	of	the	TOE.	

Evaluator	action	elements	

APE_SPD.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

7.5 Security	objectives	(APE_OBJ)	

7.5.1 Objectives	

The	 security	 objectives	 are	 a	 concise	 statement	 of	 the	 intended	 response	 to	 the	 security	 problem	
defined	through	the	Security	problem	definition	(APE_SPD)	family.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 13	
	

	

Evaluation	of	the	security	objectives	is	required	to	demonstrate	that	the	security	objectives	adequately	
and	completely	address	the	security	problem	definition	and	that	the	division	of	this	problem	between	
the	TOE	and	its	operational	environment	is	clearly	defined.	
7.5.2 Component	levelling	

The	components	in	this	family	are	levelled	on	whether	they	prescribe	only	security	objectives	for	the	
operational	environment,	or	also	security	objectives	for	the	TOE.	
7.5.3 APE_OBJ.1	Security	objectives	for	the	operational	environment	

Dependencies:	No	dependencies.	

Developer	action	elements	

APE_OBJ.1.1D	

The	developer	shall	provide	a	statement	of	security	objectives.	

APE_OBJ.1.2D	

The	developer	shall	provide	a	security	objectives	rationale.	

Content	and	presentation	elements	

APE_OBJ.1.1C	

The	statement	of	security	objectives	shall	describe	the	security	objectives	for	the	operational	
environment.	

APE_OBJ.1.2C	

The	 security	 objectives	 rationale	 shall	 trace	 each	 security	 objective	 for	 the	 operational	
environment	 back	 to	 threats	 countered	 by	 that	 security	 objective,	 OSPs	 enforced	 by	 that	
security	objective,	and	assumptions	upheld	by	that	security	objective.	

APE_OBJ.1.3C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 for	 the	
operational	environment	uphold	all	assumptions.	

Evaluator	action	elements	

APE_OBJ.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
7.5.4 APE_OBJ.2	Security	objectives	

Dependencies:	 APE_SPD.1	Security	problem	definition	

Developer	action	elements	

APE_OBJ.2.1D	

The	developer	shall	provide	a	statement	of	security	objectives.	

APE_OBJ.2.2D	

The	developer	shall	provide	a	security	objectives	rationale.	

Content	and	presentation	elements	

APE_OBJ.2.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 14	
	

	

The	 statement	 of	 security	 objectives	 shall	 describe	 the	 security	 objectives	 for	 the	 TOE	 and	 the	
security	objectives	for	the	operational	environment.	

APE_OBJ.2.2C	

The	security	objectives	rationale	shall	trace	each	security	objective	for	the	TOE	back	to	threats	
countered	by	that	security	objective	and	OSPs	enforced	by	that	security	objective.	

APE_OBJ.2.3C	

The	security	objectives	rationale	shall	 trace	each	security	objective	 for	 the	operational	environment	
back	 to	 threats	 countered	 by	 that	 security	 objective,	 OSPs	 enforced	 by	 that	 security	 objective,	 and	
assumptions	upheld	by	that	security	objective.	

APE_OBJ.2.4C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 counter	 all	
threats.	

APE_OBJ.2.5C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 enforce	 all	
OSPs.	

APE_OBJ.2.6C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 for	 the	 operational	
environment	uphold	all	assumptions.	

Evaluator	action	elements	

APE_OBJ.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

7.6 Extended	components	definition	(APE_ECD)	

7.6.1 Objectives	

Extended	 security	 requirements	 are	 requirements	 that	 are	 not	 based	 on	 components	 from	
ISO/IEC	15408-2	or	 this	document,	but	are	based	on	extended	components:	 components	defined	by	
the	PP	author.	

Evaluation	of	the	definition	of	extended	components	is	necessary	to	determine	that	they	are	clear	and	
unambiguous,	 and	 that	 they	 are	 necessary,	 i.e.	 they	 may	 not	 be	 clearly	 expressed	 using	 existing	
ISO/IEC	15408-2	or	this	document	components.	
7.6.2 APE_ECD.1	Extended	components	definition	

Dependencies:	No	dependencies.	

Developer	action	elements	

APE_ECD.1.1D	

The	developer	shall	provide	a	statement	of	security	requirements.	

APE_ECD.1.2D	

The	developer	shall	provide	an	extended	components	definition.	

Content	and	presentation	elements	

APE_ECD.1.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 15	
	

	

The	statement	of	security	requirements	shall	identify	all	extended	security	requirements.	

APE_ECD.1.2C	

The	 extended	 components	 definition	 shall	 define	 an	 extended	 component	 for	 each	 extended	
security	requirement.	

APE_ECD.1.3C	

The	extended	components	definition	shall	describe	how	each	extended	component	is	related	to	
the	existing	ISO/IEC	15408	series	components,	families,	and	classes.	

APE_ECD.1.4C	

The	extended	components	definition	shall	use	the	existing	ISO/IEC	15408	series	components,	
families,	classes,	and	methodology	as	a	model	for	presentation.	

APE_ECD.1.5C	

The	 extended	 components	 shall	 consist	 of	 measurable	 and	 objective	 elements	 such	 that	
conformance	or	nonconformance	to	these	elements	may	be	demonstrated.	

Evaluator	action	elements	

APE_ECD.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

APE_ECD.1.2E	

The	 evaluator	 shall	 confirm	 that	 no	 extended	 component	 may	 be	 clearly	 expressed	 using	
existing	components.	
7.7 Security	requirements	(APE_REQ)	

7.7.1 Objectives	

The	SFRs	form	a	clear,	unambiguous	and	well-defined	description	of	the	expected	security	behaviour	
of	the	TOE.	The	SARs	form	a	clear,	unambiguous	and	well-defined	description	of	the	expected	activities	
that	will	be	undertaken	to	gain	assurance	in	the	TOE.	

Evaluation	of	 the	 security	 requirements	 is	 required	 to	ensure	 that	 they	are	 clear,	unambiguous	and	
well-defined.	
7.7.2 Component	levelling	

The	components	in	this	family	are	levelled	on	whether	the	SFRs	are	derived	from	SPDwhether	they	are	
stated	as	is,	or	whether	the	SFRs	are	derived	from	security	objectives	for	the	TOE.	
7.7.3 APE_REQ.1	Direct	rationale	PP-Module	security	requirements	

Dependencies:		 APE_ECD.1	Extended	components	definition	

	 	 	 	 APE_OBJ.1	Security	objectives	for	the	operational	environment	

Developer	action	elements	

APE_REQ.1.1D	

The	developer	shall	provide	a	statement	of	security	requirements.	

APE_REQ.1.2D	

The	developer	shall	provide	a	security	requirements	rationale.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 16	
	

	

Content	and	presentation	elements	

APE_REQ.1.1C	

The	statement	of	security	requirements	shall	describe	the	SFRs	and	the	SARs.	

APE_REQ.1.2C	

All	subjects,	objects,	operations,	security	attributes,	external	entities	and	other	terms	that	are	
used	in	the	SFRs	and	the	SARs	shall	be	defined.	

APE_REQ.1.3C	

The	 statement	 of	 security	 requirements	 shall	 include	 a	natural	 language	description,	 part	 of	
which	describes	how	the	SFRs	combine	 together	 to	provide	security	 functionality	 in	 terms	of	
the	architecture	that	 is	observable	 to	Administrators	and	other	users,	or	 in	 terms	of	 internal	
features	or	properties.	

APE_REQ.1.4C3C	

The	 statement	 of	 security	 requirements	 shall	 identify	 all	 operations	 on	 the	 security	
requirements.	

APE_REQ.1.5C4C	

All	operations	shall	be	performed	correctly.	

APE_REQ.1.6C5C	

Each	 dependency	 of	 the	 security	 requirements	 shall	 either	 be	 satisfied,	 or	 the	 security	
requirements	rationale	shall	justify	the	dependency	not	being	satisfied.	

APE_REQ.1.7C6C	

The	security	requirements	rationale	shall	trace	each	SFR	back	to	the	threats	countered	by	that	
SFR	and	the	OSPs	enforced	by	that	SFR.	

APE_REQ.1.8C7C	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	(in	conjunction	with	the	
security	objectives	for	the	environment)	counter	all	threats	for	the	TOE.	

APE_REQ.1.9C8C	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	(in	conjunction	with	the	
security	objectives	for	the	environment)	enforce	all	OSPs	for	the	TOE.	

APE_REQ.1.10C9C	

The	statement	of	security	requirements	shall	be	internally	consistent.	

Evaluator	action	elements	

APE_REQ.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
7.7.4 APE_REQ.2	Derived	security	requirements	

Dependencies:	 APE_OBJ.2	Security	objectives	

	 APE_ECD.1	Extended	components	definition	
Developer	action	elements	

APE_REQ.2.1D	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 17	
	

	

The	developer	shall	provide	a	statement	of	security	requirements.	

APE_REQ.2.2D	

The	developer	shall	provide	a	security	requirements	rationale.	

Content	and	presentation	elements	

APE_REQ.2.1C	

The	statement	of	security	requirements	shall	describe	the	SFRs	and	the	SARs.	

APE_REQ.2.2C	

All	subjects,	objects,	operations,	security	attributes,	external	entities	and	other	terms	that	are	used	in	
the	SFRs	and	the	SARs	shall	be	defined.	

APE_REQ.2.3C	

The	statement	of	security	requirements	shall	identify	all	operations	on	the	security	requirements.	

APE_REQ.2.4C	

All	operations	shall	be	performed	correctly.	

APE_REQ.2.5C	

Each	dependency	of	the	security	requirements	shall	either	be	satisfied,	or	the	security	requirements	
rationale	shall	justify	the	dependency	not	being	satisfied.	

APE_REQ.2.6C	

The	security	requirements	rationale	shall	trace	each	SFR	back	to	the	security	objectives	for	the	TOE	
enforced	by	that	SFR.	

APE_REQ.2.7C	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	meet	all	security	objectives	for	
the	TOE.	

APE_REQ.2.8C	

The	security	requirements	rationale	shall	explain	why	the	SARs	were	chosen.	

APE_REQ.2.9C	

The	statement	of	security	requirements	shall	be	internally	consistent.	

Evaluator	action	elements	

APE_REQ.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

8 Class	ACE:	Protection	Profile	Configuration	evaluation	

8.1 Introduction	

Evaluating	 a	 PP-Configuration	 is	 required	 to	 demonstrate	 that	 the	 PP-Configuration	 is	 sound	 and	
consistent.	These	properties	are	necessary	for	the	PP-Configuration	to	be	suitable	for	use	as	the	basis	
for	writing	an	ST.	

The	class	ACE	is	defined	for	the	evaluation	of	a	PP-Configuration	composed	of	at	least	one	PP	and	one	
other	component	(PPs	and/or	PP-Modules).	The	evaluation	of	PPs	is	addressed	in	Class	APE.	The	class	
ACE	defines	the	requirements	for:	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 18	
	

	

—	 Evaluating	the	PP-Modules	in	the	framework	of	their	PP-Modules	Base(s)	(components	ACE_INT.1,	
ACE_CCL.1,	ACE_SPD.1,	ACE_OBJ.1	or	ACE_OBJ.2,	ACE_REQ.1	or	ACE_REQ.2,	and	ACE_MCO.1).	

—	 Evaluating	the	consistency	of	the	combination	of	all	the	PPs	and	PP-Modules	that	belong	to	the	PP-
Configuration	(see	ACE_CCO.1).	

Clause	8	should	be	used	in	conjunction	with	Annex	C	of	ISO/IEC	15408-1.	

	

Figure	5	—	ACE:	Protection	Profile	Configuration	evaluation	class	decomposition	

8.2 PP-Module	introduction	(ACE_INT)	

8.2.1 Objectives	

The	objective	of	this	family	is	to	describe	the	TOE	in	a	narrative	way.	

The	 evaluation	 of	 the	 PP-Module	 introduction	 is	 required	 to	 demonstrate	 that	 the	 PP-Module	 is	
correctly	 identified,	 and	 that	 the	 PP-Module	 reference	 and	 TOE	 overview	 are	 consistent	 with	 each	
other.	
8.2.2 ACE_INT.1	PP-Module	introduction	

Dependencies:	No	dependencies.	

Developer	action	elements	

ACE_INT.1.1D	

The	developer	shall	provide	a	PP-Module	introduction.	

Content	and	presentation	elements	

ACE_INT.1.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 19	
	

	

The	PP-Module	introduction	shall	contain	a	PP-Module	reference,	the	identification	of	the	PP-
Module	Base(s)	and	a	TOE	overview.	

ACE_INT.1.2C	

The	PP-Module	reference	shall	uniquely	identify	the	PP-Module.	

ACE_INT.1.3C	

The	identification	of	the	PP-Module	Base	shall	consist	of	a	 list	of	at	 least	one	PP	and	possibly	
other	PPs	and	PP-Modules	on	which	the	PP-Module	depends.	

ACE_INT.1.4C3C	

The	identification	of	the	PP-Module	Base(s)	shall	describe	the	dependency	structure	of	the	PP-
Module	Base(s).	

ACE_INT.1.5C4C	

The	 PP-Module	 introduction	 shall	 contain	 as	many	 TOE	 overviews	 as	 alternative	 PP-Module	
Bases.	

ACE_INT.1.6C5C	

The	TOE	overview	shall	summarize	the	usage	and	major	security	features	of	the	TOE.	

ACE_INT.1.7C6C	

The	TOE	overview	shall	identify	the	TOE	type.	

ACE_INT.1.8C7C	

The	 TOE	 overview	 shall	 identify	 any	 non-TOE	 hardware/software/firmware	 available	 to	 the	
TOE.	

ACE_INT.1.9C8C	

The	TOE	overview	shall	describe	the	differences	of	the	TOE	with	regard	to	the	TOEs	defined	in	
the	PP-Module	Base(s).	

ACE_INT.1.9C	

The	identification	of	the	PP-Module	Base	shall	consist	of	a	 list	of	at	 least	one	PP	and	possibly	
other	PPs	and	PP-Modules	on	which	the	PP-Module	depends.	

	

Evaluator	action	elements	

ACE_INT.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
8.3 PP-Module	conformance	claims	(ACE_CCL)	

8.3.1 Objectives	

The	objective	 of	 this	 family	 is	 to	determine	 the	 validity	 of	 the	 conformance	 claim	and	 conformance	
statement.	A	PP-Module	cannot	claim	conformance	to	any	PP,	PP-Configuration,	or	another	PP-Module.	
8.3.2 ACE_CCL.1	PP-Module	conformance	claims	

Dependencies:	 ACE_INT.1	PP-Module	introduction	

	 ACE_ECD.1	PP-Module	extended	components	definition	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 20	
	

	

	 ACE_REQ.1	 PP-Module	 stated	 security	 requirements	 or	 ACE_REQ.2	 PP-Module	
derived	security	requirements	

Developer	action	elements	

ACE_CCL.1.1D	

The	developer	shall	provide	a	conformance	claim.	

ACE_CCL.1.2D	

The	developer	shall	provide	a	conformance	statement.	

Content	and	presentation	elements	

ACE_CCL.1.1C	

The	conformance	claim	shall	identify	the	ISO/IEC	15408	edition	to	which	the	PP-Module	claims	
conformance.	

ACE_CCL.1.2C	

The	 conformance	 claim	 shall	 describe	 the	 conformance	 of	 the	 PP-Module	 to	 ISO/IEC	15408-2	 as	
either	ISO/IEC	15408-2	conformant	or	ISO/IEC	15408-2	extended.	

ACE_CCL.1.3C	

The	conformance	statement	shall	describe	the	conformance	type	required	of	any	ST	to	the	PP-
Module	(as	part	of	a	PP-Configuration)	as	one	of	exact,	strict,	or	demonstrable.	

ACE_CCL.1.4C	

The	conformance	claim	shall	describe	the	conformance	of	the	PP-Module	to	this	document	as	
either	“ISO/IEC	15408-3	conformant”	or	“ISO/IEC	15408-3	extended”.”	

ACE_CCL.1.5C	

The	conformance	claim	shall	be	consistent	with	the	extended	components	definition.	

ACE_CCL.1.6C	

The	 conformance	 claim	 shall	 identify	 all	 functional	 packages	 to	which	 the	 PP-Module	 claims	
conformance.	

ACE_CCL.1.7C	

The	 conformance	 claim	 shall	 describe	 any	 conformance	 of	 the	 PP-Module	 to	 a	 functional	
package	as	either	package-conformant,	package-augmented	or	package-tailored.	

ACE_CCL.1.8C	

The	 conformance	 claim	 shall	 identify	 all	 assurance	 packages	 to	which	 the	 PP-Module	 claims	
conformance.	

ACE_CCL.1.9C	

The	 conformance	 claim	 shall	 describe	 any	 conformance	 of	 the	 PP-Module	 to	 an	 assurance	
package	as	either	package-conformant	or	package-augmented.	

ACE_CCL.1.10C	

For	exact	conformance,	the	PP-Module’s	conformance	statement	shall	contain	an	allowed-with	
statement	that	identifies	the	set	of	PPs	and	PP-Modules	(exclusive	of	those	PPs	and	PP-Modules	
that	are	included	in	the	PP-Module	Base)	to	which,	in	combination	with	the	PP-Module	under	
evaluation,	exact	conformance	is	allowed	to	be	claimed.	

ACE_CCL.1.11C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 21	
	

	

The	conformance	statement	may	identify	the	set	of	ISO/IEC	18045-derived	Evaluation	Methods	
Evaluation	methods	and	Evaluation	Activities	Evaluation	activities	that	shall	be	used	with	the	
PP-Module	 under	 evaluation.	 This	 list	 shall	 contain	 any	 Evaluation	 Methods	 Evaluation	
methods	and	Evaluation	Activities	Evaluation	activities	that	are	specified	in	the	PP-Module	but	
also	any	Evaluation	Methods	Evaluation	methods	and	Evaluation	Activities	Evaluation	activities	
specified	 in	 the	PP-Module	Base(s)	and/or	 in	 the	packages	 (if	 any)	 for	which	conformance	 is	
being	claimed	by	the	PP-Module	under	evaluation.	

Evaluator	action	elements	

ACE_CCL.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

8.4 PP-Module	security	problem	definition	(ACE_SPD)	

8.4.1 Objectives	

This	 part	 of	 the	 PP-Module	 defines	 the	 security	 problem	 to	 be	 addressed	 by	 the	 TOE	 and	 the	
operational	environment	of	the	TOE.	

Evaluation	 of	 the	 security	 problem	 definition	 is	 required	 to	 demonstrate	 that	 the	 security	 problem	
intended	to	be	addressed	by	the	TOE	and	its	operational	environment,	is	clearly	defined.	
8.4.2 ACE_SPD.1	PP-Module	Security	security	problem	definition	

Dependencies:	No	dependencies.	

Developer	action	elements	

ACE_SPD.1.1D	

The	developer	shall	provide	a	security	problem	definition.	

Content	and	presentation	elements	

ACE_SPD.1.1C	

The	security	problem	definition	shall	describe	the	threats.	

ACE_SPD.1.2C	

All	threats	shall	be	described	in	terms	of	a	threat	agent,	an	asset,	and	an	adverse	action.	

ACE_SPD.1.3C	

The	security	problem	definition	shall	describe	the	OSPs.	

ACE_SPD.1.4C	

The	 security	 problem	 definition	 shall	 describe	 the	 assumptions	 about	 the	 operational	
environment	of	the	TOE.	

Evaluator	action	elements	

ACE_SPD.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 22	
	

	

8.5 PP-Module	security	objectives	(ACE_OBJ)	

8.5.1 Objectives	

The	 security	 objectives	 are	 a	 concise	 statement	 of	 the	 intended	 response	 to	 the	 security	 problem	
defined	through	the	Security	problem	definition	(APE_SPD)	family.	

Evaluation	of	the	security	objectives	is	required	to	demonstrate	that	the	security	objectives	adequately	
and	completely	address	the	security	problem	definition	and	that	the	division	of	this	problem	between	
the	TOE	and	its	operational	environment	is	clearly	defined.	
8.5.2 Component	levelling	

The	components	in	this	family	are	levelled	on	whether	they	prescribe	only	security	objectives	for	the	
operational	environment	(see	ACE_OBJ.1),	or	also	security	objectives	for	the	TOE	(see	ACE_OBJ.2).	
8.5.3 ACE_OBJ.1	Direct	Rationale	PP-Module	security	objectives	for	the	operational	
environment	

Dependencies:	No	dependencies.	

Developer	action	elements	

ACE_OBJ.1.1D	

The	developer	shall	provide	a	statement	of	security	objectives	for	the	PP-Module.	

ACE_OBJ.1.2D	

The	developer	shall	provide	a	security	objectives	rationale	for	the	PP-Module.	

Content	and	presentation	elements	

ACE_OBJ.1.1C	

The	statement	of	security	objectives	shall	describe	the	security	objectives	for	the	operational	
environment.	

ACE_OBJ.1.2C	

The	 security	 objectives	 rationale	 shall	 trace	 each	 security	 objective	 for	 the	 operational	
environment	 back	 to	 threats	 countered	 by	 that	 security	 objective,	 OSPs	 enforced	 by	 that	
security	objective,	and	assumptions	upheld	by	that	security	objective.	

ACE_OBJ.1.3.C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 for	 the	
operational	environment	uphold	all	assumptions.	

Evaluator	action	elements	

ACE_OBJ.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
8.5.4 ACE_OBJ.2	PP-Module	security	objectives	

Dependencies:	ACE_SPD.1	PP-Module	security	problem	definition.	

Developer	action	elements	

ACE_OBJ.2.1D	

The	developer	shall	provide	a	statement	of	security	objectives	for	the	PP-Module.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 23	
	

	

ACE_OBJ.2.2D	

The	developer	shall	provide	a	security	objectives	rationale	for	the	PP-Module.	

Content	and	presentation	elements	

ACE_OBJ.2.1C	

The	 statement	 of	 security	 objectives	 shall	 describe	 the	 security	 objectives	 for	 the	 TOE	 and	 the	
security	objectives	for	the	operational	environment.	

ACE_OBJ.2.2C	

The	security	objectives	rationale	shall	trace	each	security	objective	for	the	TOE	back	to	threats	
countered	by	that	security	objective	and	OSPs	enforced	by	that	security	objective.	

ACE_OBJ.2.3C	

The	security	objectives	rationale	shall	 trace	each	security	objective	 for	 the	operational	environment	
back	 to	 threats	 countered	 by	 that	 security	 objective,	 OSPs	 enforced	 by	 that	 security	 objective,	 and	
assumptions	upheld	by	that	security	objective.	

ACE_OBJ.2.4C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 counter	 all	
threats.	

ACE_OBJ.2.5C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 enforce	 all	
OSPs.	

ACE_OBJ.2.6C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 for	 the	 operational	
environment	uphold	all	assumptions.	

Evaluator	action	elements	

ACE_OBJ.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

8.6 PP-Module	extended	components	definition	(ACE_ECD)	

8.6.1 Objectives	

Extended	security	functional	requirements	are	requirements	that	are	not	based	on	components	from	
ISO/IEC	15408-2	or	 this	document,	but	are	based	on	extended	components:	 components	defined	by	
the	PP-Module	author.	

Evaluation	of	the	definition	of	extended	functional	components	is	necessary	to	determine	that	they	are	
clear	 and	 unambiguous,	 and	 that	 they	 are	 necessary,	 i.e.	 they	 may	 not	 be	 clearly	 expressed	 using	
existing	ISO/IEC	15408-2	or	this	document	components.	
8.6.2 ACE_ECD.1	PP-Module	extended	components	definition	

Dependencies:	No	dependencies.	

Developer	action	elements	

ACE_ECD.1.1D	

The	developer	shall	provide	a	statement	of	security	requirements	for	the	PP-Module.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 24	
	

	

ACE_ECD.1.2D	

The	developer	shall	provide	an	extended	components	definition	for	the	PP-Module.	

Content	and	presentation	elements	

ACE_ECD.1.1C	

The	statement	of	security	requirements	shall	identify	all	the	extended	security	requirements.	

ACE_ECD.1.2C	

The	 extended	 components	 definition	 shall	 define	 an	 extended	 component	 for	 each	 extended	
security	requirement.	

ACE_ECD.1.3C	

The	extended	components	definition	shall	describe	how	each	extended	component	is	related	to	
the	existing	ISO/IEC	15408	series	components,	families,	and	classes.	

ACE_ECD.1.4C	

The	extended	components	definition	shall	use	the	existing	ISO/IEC	15408	series	components,	
families,	classes,	and	methodology	as	a	model	for	presentation.	

ACE_ECD.1.5C	

The	 extended	 components	 shall	 consist	 of	 measurable	 and	 objective	 elements	 such	 that	
conformance	or	nonconformance	to	these	elements	may	be	demonstrated	

Evaluator	action	elements	

ACE_ECD.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ACE_ECD.1.2E	

The	 evaluator	 shall	 confirm	 that	 no	 extended	 component	 may	 be	 clearly	 expressed	 using	
existing	components.	
8.7 PP-Module	security	requirements	(ACE_REQ)	

8.7.1 Objectives	

The	SFRs	form	a	clear,	unambiguous	and	well-defined	description	of	the	expected	security	behaviour	
of	the	TOE.	The	SARs	form	a	clear,	unambiguous	and	well-defined	description	of	the	expected	activities	
that	will	be	undertaken	to	gain	assurance	in	the	TOE.	

Evaluation	of	 the	 security	 requirements	 is	 required	 to	ensure	 that	 they	are	 clear,	unambiguous	and	
well-defined.	
8.7.2 Component	levelling	

The	components	in	this	family	are	levelled	on	whether	the	SFRs	are	derived	from	SPDwhether	they	are	
stated	as	is	(see	ACE_REQ.1),	or	whether	the	SFRs	are	derived	from	the	security	objectives	for	the	TOE	
(see	ACE_REQ.2.).	
8.7.3 ACE_REQ.1	PP-Module	stated	security	requirements	

Dependencies:	 APE_ECD.1	Extended	components	definition	

	 ACE_SPD.1	PP-Module	security	problem	definition	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 25	
	

	

Developer	action	elements	

ACE_REQ.1.1D	

The	developer	shall	provide	a	statement	of	security	requirements	for	the	PP-Module.	

ACE_REQ.1.2D	

The	developer	shall	provide	a	security	requirements	rationale	for	the	PP-Module.	

Content	and	presentation	elements	

ACE_REQ.1.1C	

The	statement	of	security	requirements	shall	describe	the	SFRs	and	SARs	(the	SARs	that	apply	
to	the	PP-Module	may	be	explicitly	stated,	or	inherited	from	the	PP-Module	Base(s)).	

ACE_REQ.1.2C	

All	subjects,	objects,	operations,	security	attributes,	external	entities	and	other	terms	that	are	
used	in	the	SFRs	and	the	SARs	shall	be	defined.	

ACE_REQ.1.3C	

The	 statement	 of	 security	 requirements	 shall	 include	 a	natural	 language	description,	 part	 of	
which	describes	how	the	SFRs	combine	 together	 to	provide	security	 functionality	 in	 terms	of	
the	architecture	that	 is	observable	 to	Administrators	and	other	users,	or	 in	 terms	of	 internal	
features	or	properties.	

ACE_REQ.1.4C3C	

The	 statement	 of	 security	 requirements	 shall	 identify	 all	 operations	 on	 the	 security	
requirements.	

ACE_REQ.1.5C4C	

All	operations	shall	be	performed	correctly.	

ACE_REQ.1.6C5C	

Each	 dependency	 of	 the	 security	 requirements	 shall	 either	 be	 satisfied,	 or	 the	 security	
requirements	rationale	shall	justify	the	dependency	not	being	satisfied.	

ACE_REQ.1.7C6C	

The	security	requirements	rationale	shall	trace	each	SFR	back	to	the	threats	countered	by	that	
SFR	and	the	OSPs	enforced	by	that	SFR.	

ACE_REQ.1.8C7C	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	(in	conjunction	with	the	
security	objectives	for	the	environment)	counter	all	the	threats	for	the	TOE.	

ACE_REQ.1.9C8C	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	(in	conjunction	with	the	
security	objectives	for	the	environment)	enforce	all	the	OSPs	for	the	TOE.	

ACE_REQ.1.10C9C	

The	security	requirements	rationale	shall	explain	why	the	SARs	were	chosen.	

ACE_REQ.1.11C10C	

The	statement	of	security	requirements	shall	be	internally	consistent.	

Evaluator	action	elements	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 26	
	

	

ACE_REQ.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
8.7.4 ACE_REQ.2	PP-Module	derived	security	requirements	

Dependencies:	 ACE_ECD.1	PP-Module	extended	components	definition	

	 ACE_OBJ.2	PP-Module	security	objectives	
Developer	action	elements	

ACE_REQ.2.1D	

The	developer	shall	provide	a	statement	of	security	requirements	for	the	PP-Module.	

ACE_REQ.2.2D	

The	developer	shall	provide	a	security	requirement	rationale	for	the	PP-Module.	

Content	and	presentation	elements	

ACE_REQ.2.1C	

The	statement	of	security	requirements	shall	describe	the	SFRs	and	SARs	(the	SARs	that	apply	to	the	
PP-Module	may	be	explicitly	stated,	or	inherited	from	the	PP-Module	Base(s)).	

ACE_REQ.2.2C	

All	subjects,	objects,	operations,	security	attributes,	external	entities	and	other	terms	that	are	used	in	
the	SFRs	and	the	SARs	shall	be	defined.	

ACE_REQ.2.3C	

The	statement	of	security	requirements	shall	identify	all	operations	on	the	security	requirements.	

ACE_REQ.2.4C	

All	operations	shall	be	performed	correctly.	

ACE_REQ.2.5C	

Each	dependency	of	the	security	requirements	shall	either	be	satisfied,	or	the	security	requirements	
rationale	shall	justify	the	dependency	not	being	satisfied.	

ACE_REQ.2.6C	

The	security	requirements	rationale	shall	trace	each	SFR	back	to	the	security	objectives	for	the	TOE	
enforced	by	that	SFR.	

ACE_REQ.2.7C	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	meet	all	security	objectives	for	
the	TOE.	

ACE_REQ.2.8C	

The	security	requirements	rationale	shall	explain	why	the	SARs	were	chosen.	

ACE_REQ.2.9C	

The	statement	of	security	requirements	shall	be	internally	consistent.	

Evaluator	action	elements	

ACE_REQ.2.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 27	
	

	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

8.8 PP-Module	consistency	(ACE_MCO)	

8.8.1 Objectives	

The	 objective	 of	 this	 family	 is	 to	 determine	 the	 consistency	 of	 the	 PP-Module	 and	 to	 state	 the	
correspondence	between	the	PP-Module	and	its	PP-Module	Base(s).	
8.8.2 ACE_MCO.1	PP-Module	consistency	

Dependencies:	 ACE_INT.1	PP-Module	introduction	

	 ACE_SPD.1	PP-Module	Security	problem	definition	

	 ACE_OBJ.1	 Direct	 Rationale	 PP-Module	 Security	 objectives	 for	 the	 environment	 or	
ACE_OBJ.2	PP-Module	Security	objectives	

	 ACE_REQ.1	 Direct	 Rationale	 PP-Module	 security	 requirements	 or	 ACE_REQ.2	 PP-
Module	derived	security	requirements	

Developer	action	elements	

ACE_MCO.1.1D	

The	developer	shall	provide	a	consistency	rationale	of	the	PP-Module	for	each	of	the	alternative	
PP-Module	Bases	identified	in	the	PP-Module	introduction.	

ACE_MCO.1.2D	

The	developer	shall	provide	an	assurance	rationale	of	the	PP-Module	for	each	of	the	alternative	
PP-Module	Bases	identified	in	the	PP-Module	introduction.	

Content	and	presentation	elements	

ACE_MCO.1.1C	

The	consistency	rationale	shall	demonstrate	that	the	TOE	type	of	the	PP-Module	and	the	TOE	
types	of	its	PP-Module	Base(s)	are	consistent.	

ACE_MCO.1.2C	

The	consistency	rationale	shall	 identify	 the	assets	of	 the	PP-Module’s	SPD	that	also	belong	to	
some	 of	 its	 PP-Module	 Bases	 and	 amongst	 them	 those	 for	which	 the	 PP-Module	 and	 the	 PP-
Module	Base	define	different	security	problems.	

ACE_MCO.1.3C	

The	consistency	rationale	shall	demonstrate	that:	

—	 the	 statement	 of	 the	 security	 problem	 definition	 is	 consistent	 with	 the	 statement	 of	 the	
security	problem	definition	of	its	PP-Module	Base(s);	

—	 the	 statement	 of	 the	 security	 problem	 definition	 is	 consistent	 with	 the	 statement	 of	 the	
security	 problem	 definition	 of	 any	 functional	 package	 for	 which	 conformance	 is	 being	
claimed.	

ACE_MCO.1.4C	

The	consistency	rationale	shall	demonstrate	that:	

—	 the	security	objectives	definition	is	consistent	with	the	security	objectives	of	its	PP-Module	
Base(s);	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 28	
	

	

—	 the	security	objectives	definition	is	consistent	with	the	security	objectives	of	any	functional	
package	for	which	conformance	is	being	claimed.	

ACE_MCO.1.5C	

The	consistency	rationale	shall	demonstrate	that:	

—	 the	 security	 functional	 requirements	 definition	 is	 consistent	with	 the	 security	 functional	
requirements	of	its	PP-Modules	Base(s);	

—	 the	 security	 functional	 requirements	 definition	 is	 consistent	with	 the	 security	 functional	
requirements	of	any	functional	package	for	which	conformance	is	being	claimed.	

ACE_MCO.1.6C	

The	 assurance	 rationale	 shall	 demonstrate	 the	 internal	 consistency	 of	 the	 set	 of	 security	
assurance	requirements	of	the	PP-Module	with	regard	to	its	security	problem	definition.	

ACE_MCO.1.7C	

The	 assurance	 rationale	 shall	 demonstrate	 the	 consistency	 of	 the	 set	 of	 security	 assurance	
requirements	of	the	PP-Module	with	regard	to	the	security	assurance	requirements	of	the	PP-
Module	Base(s).	

Evaluator	action	elements	

ACE_MCO.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	 presentation	 of	 evidence.	 If	 the	 PP-Module	 specifies	 alternative	 PP-Module	 Bases,	 the	
evaluator	shall	perform	this	action	for	each	consistency	rationale.	
8.9 PP-Configuration	consistency	(ACE_CCO)	

8.9.1 Objectives	

The	 objective	 of	 this	 family	 is	 to	 determine	 the	 well-formedness	 and	 the	 consistency	 of	 the	 PP-
Configuration.	
8.9.2 ACE_CCO.1	PP-Configuration	consistency	

Dependencies:	 ACE_INT.1	PP-Module	introduction	

	 ACE_CCL.1	PP-Module	conformance	claims	

	 ACE_SPD.1	PP-Module	security	problem	definition	

	 ACE_OBJ.1	Direct	Rationale	PP-Module	security	objectives	for	the	environment	or	
ACE_OBJ.2	PP-Module	security	objectives	

	 ACE_ECD.1	PP-Module	extended	component	definition	

	 ACE_REQ.1	Direct	Rational	 PP-Module	 security	 requirements	 or	ACE_REQ.2	PP-
Module	derived	security	requirements	

	 ACE_MCO.1	PP-Module	consistency	

	 APE_*	(all	APE	components)	
Developer	action	elements	

ACE_CCO.1.1D	

The	developer	shall	provide	the	reference	of	the	PP-Configuration.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 29	
	

	

ACE_CCO.1.2D	

The	developer	shall	provide	a	components	statement.	

ACE_CCO.1.3D	

The	developer	shall	provide	a	TOE	overview.	

ACE_CCO.1.4D	

The	developer	shall	provide	a	conformance	claim.	

ACE_CCO.1.5D	

The	developer	shall	provide	a	conformance	statement	within	the	conformance	claim.	

ACE_CCO.1.6D	

The	developer	shall	provide	a	consistency	rationale.	

ACE_CCO.1.7D	

The	developer	shall	provide	a	SAR	statement.	

ACE_CCO.1.8D	

The	 developer	 shall	 provide	 the	 set	 of	 Evaluation	 Methods	 Evaluation	 methods	 and/or	
Activities	that	are	applicable	to	the	PP-Configuration.	

Content	and	presentation	elements	

ACE_CCO.1.1C	

The	PP-Configuration	reference	shall	uniquely	identify	the	PP-Configuration.	

ACE_CCO.1.2C	

The	PP-Configuration	 components	 statement	 shall	 uniquely	 identify	 the	PPs	 and	PP-Modules	
that	compose	the	PP-Configuration.	

ACE_CCO.1.3C	

For	each	PP-Module	identified	in	the	PP-Configuration	components	statement,	the	components	
statement	 shall	 include	 the	PP-Module	Base	 required	by	 the	 identified	PP-Module.	 If	 the	PP-
Module	 specifies	 alternative	 PP-Module	 Bases,	 only	 one	 of	 these	 PP-Module	 Bases	 shall	 be	
referred	to	in	the	PP-Configuration.	

ACE_CCO.1.4C	

For	 a	 multi-assurance	 PP-Configuration,	 the	 components	 statement	 shall	 describe	 the	
organization	of	the	TSF	in	terms	of	the	sub-TSFs	defined	in	the	PPs	and	PP-Modules	defined	in	
the	PP-Configuration.	

ACE_CCO.1.5C	

The	TOE	overview	shall	identify	the	TOE	type.	

ACE_CCO.1.6C	

The	TOE	overview	shall	describe	the	usage	and	major	security	features	of	the	TOE.	

ACE_CCO.1.7C	

The	 TOE	 overview	 shall	 identify	 any	 non-TOE	 hardware/software/firmware	 available	 to	 the	
TOE.	

ACE_CCO.1.8C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 30	
	

	

The	 conformance	 claim	 shall	 identify	 the	 ISO/IEC	 15408	 edition(s)	 to	 which	 the	 PP-
Configuration	components	claim	conformance.	

ACE_CCO.1.9C	

The	 conformance	 claim	 shall	 describe	 the	 conformance	 of	 the	 PP-Configuration	 to	
ISO/IEC	15408-2	as	either	ISO/IEC	15408-2	conformant	or	ISO/IEC	15408-2	extended.	

ACE_CCO.1.10C	

The	 conformance	 claim	 shall	 describe	 the	 conformance	 of	 the	 PP-Configuration	 to	 this	
document	as	either	“ISO/IEC	15408-3	conformant”	or	ISO/IEC	15408-3	extended.”	

ACE_CCO.1.11C	

The	 conformance	 claim	 shall	 be	 consistent	 with	 the	 conformance	 claims	 of	 the	 PP-
Configuration	components.	

ACE_CCO.1.12C	

The	conformance	claim	of	a	PP-Configuration	shall	include	an	assurance	package	conformance	
claim	 consisting	 of	 statements	 describing	 any	 conformance	 of	 the	 PP-Configuration	 to	 an	
assurance	package	as	either	package-conformant	or	package-augmented.	

ACE_CCO.1.13C	

The	conformance	statement	shall	specify	the	required	conformance	to	the	PP-Configuration	as	
one	 of	 exact,	 strict,	 demonstrable,	 or	 it	 shall	 provide	 the	 list	 of	 conformance	 types	 that	 are	
required	by	each	of	the	PP-Configuration	components.	

ACE_CCO.1.14C	

For	the	exact	conformance	case,	 the	allowed-with	statement	of	 the	conformance	statement	of	
each	PP	included	in	the	components	statement	of	the	PP-Configuration	shall	identify	all	the	PP-
Configuration	 components	 as	 being	 allowed	 to	 be	 used	 in	 combination	with	 the	 PP	 in	 a	 PP-
Configuration.	

ACE_CCO.1.15C	

For	the	exact	conformance	case,	 the	allowed-with	statement	of	 the	conformance	statement	of	
each	PP-Module	included	in	the	components	statement	of	the	PP-Configuration	shall	identify	all	
the	PP-Configuration	components	that	are	not	in	the	PP-Module	Base(s)	for	that	particular	PP-
Module	as	being	allowed	to	be	used	in	combination	with	the	PP-Module	in	a	PP-Configuration.	

ACE_CCO.1.16C	

For	 PP-Configurations	 that	 are	 not	 of	 exact	 conformance	 type	 (i.e.	 for	 PP-Configurations	 of	
strict	 or	 demonstrable	 conformance	 type),	 the	 conformance	 statement	 of	 a	 PP-Configuration	
may	 include	an	Evaluation	Methods	Evaluation	methods	and	Evaluation	Activities	Evaluation	
activities	 reference	 statement	 that	 identifies	 the	 set	 of	 ISO/IEC	18045-derived	 Evaluation	
Methods	Evaluation	methods	and	Evaluation	Activities	Evaluation	activities	that	are	applicable	
to	the	PP-Configuration	under	evaluation.	

ACE_CCO.1.17C	

The	consistency	rationale	shall	demonstrate	that	the	TOE	type	defined	in	the	PP-Configuration	
is	 consistent	 with	 the	 TOE	 types	 defined	 in	 the	 PPs	 and	 PP-Modules	 that	 belong	 to	 the	 PP-
Configuration	components	statement.	

ACE_CCO.1.18C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 31	
	

	

The	consistency	rationale	shall	demonstrate	that	the	union	of	all	the	SPDs,	security	objectives	
and	 security	 functional	 requirements	 defined	 in	 the	 PP-Configuration	 components	 is	
consistent.	

ACE_CCO.1.19C	

For	 a	 single-assurance	 PP-Configuration,	 the	 SAR	 statement	 shall	 define	 a	 single	 set	 of	 SARs	
that	applies	to	the	entire	TOE.	For	strict	and	demonstrable	conformance,	the	set	of	SARs	shall	
include	 the	 SARs	 identified	 in	 each	 of	 the	 PP-Configuration	 components.	 For	 exact	
conformance,	the	set	of	SARs	shall	be	identical	to	the	set	of	SARs	identified	in	each	of	the	PP-
Configuration	components.	

ACE_CCO.1.20C	

For	a	multi-assurance	PP-Configuration,	the	SAR	statement	shall	define	the	global	set	of	SARs	
that	 applies	 to	 the	 entire	 TOE	 and	 the	 SARs	 that	 apply	 to	 each	 sub-TSF.	 For	 strict	 and	
demonstrable	conformance,	 the	global	assurance	set	of	SARs	shall	 include	the	set	of	common	
SARs	 among	 the	PP-Configuration	 components,	 and	 each	 set	 of	 SARs	 that	 apply	 to	 a	 sub-TSF	
shall	 include	 those	 identified	 for	 the	PP-Configuration	 components	 associated	with	 that	 sub-
TSF.	For	exact	conformance,	the	global	assurance	set	of	SARs	shall	be	the	set	of	common	SARs	
among	the	PP-Configuration	components,	and	each	set	of	SARs	that	apply	to	a	sub-TSF	shall	be	
identical	to	those	identified	for	the	PP-Configuration	components	associated	with	that	sub-TSF.	

ACE_CCO.1.21C	

The	 SAR	 statement	 of	 a	 PP-Configuration	 shall	 include	 an	 assurance	 rationale	 that	
demonstrates	 the	 consistency	 of	 the	 applicable	 set	 of	 SARs	 with	 those	 defined	 in	 the	
components	of	the	PP-Configuration	under	evaluation	and	their	associated	Evaluation	Methods	
Evaluation	 methods	 and	 Evaluation	 Activities.	 For	 a	 multi-assurance	 PP-Configuration,	 the	
assurance	rationale	shall	demonstrate:	

—	 that	the	global	set	of	SARs	is	consistent	with	the	threats	as	defined	in	the	SPDs	of	the	PP-
Configuration	components,	and	

—	 that	the	global	set	of	SARs	and	the	sets	of	SARs	for	each	sub-TSF	are	consistent	with	each	
other.	

Evaluator	action	elements	

ACE_CCO.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ACE_CCO.1.2E	

The	evaluator	shall	check	 that	 the	PP-Configuration	consisting	of	all	 the	PPs	and	PP-Modules	
identified	in	the	component	statement	is	consistent.	

9 Class	ASE:	Security	Target	evaluation	

9.1 Introduction	

Evaluating	an	ST	is	required	to	demonstrate	that	the	ST	is	sound	and	internally	consistent,	and,	if	the	
ST	 is	 based	 on	 a	 PP-Configuration,	 or	 one	 or	 more	 PPs	 or	 packages,	 that	 the	 ST	 is	 a	 correct	
instantiation	of	the	PP-Configuration,	PPs,	and	packages.	These	properties	are	necessary	for	the	ST	to	
be	suitable	for	use	as	the	basis	for	a	TOE	evaluation.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 32	
	

	

Clause	9	 should	be	used	 in	 conjunction	with	Annexes	B,	C	and	D	 in	 ISO/IEC	15408-1:XXXX,	as	 these	
annexes	clarify	the	concepts	here	and	provide	many	examples.	

Figure	6	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	

	

Figure	6	—	ASE:	Security	Target	evaluation	class	decomposition	

9.2 ST	introduction	(ASE_INT)	

9.2.1 Objectives	

The	objective	of	 this	 family	 is	 to	describe	 the	TOE	 in	a	narrative	way	on	 three	 levels	of	abstraction:	
TOE	reference,	TOE	overview	and	TOE	description.	

Evaluation	of	 the	 ST	 introduction	 is	 required	 to	demonstrate	 that	 the	 ST	and	 the	TOE	are	 correctly	
identified,	 that	 the	 TOE	 is	 correctly	 described	 at	 three	 levels	 of	 abstraction	 and	 that	 these	 three	
descriptions	are	consistent	with	each	other.	
9.2.2 ASE_INT.1	ST	introduction	

Dependencies:	No	dependencies.	

Developer	action	elements	

ASE_INT.1.1D	

The	developer	shall	provide	an	ST	introduction.	

Content	and	presentation	elements	

ASE_INT.1.1C	

The	ST	introduction	shall	contain	an	ST	reference,	a	TOE	reference,	a	TOE	overview	and	a	TOE	
description.	

ASE_INT.1.2C	

The	ST	reference	shall	uniquely	identify	the	ST.	

ASE_INT.1.3C	

The	TOE	reference	shall	uniquely	identify	the	TOE.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 33	
	

	

ASE_INT.1.4C	

The	TOE	overview	shall	summarize	the	usage	and	major	security	features	of	the	TOE.	

ASE_INT.1.5C	

The	TOE	overview	shall	identify	the	TOE	type.	

ASE_INT.1.6C	

The	 TOE	 overview	 shall	 identify	 any	 non-TOE	 hardware/software/firmware	 required	 by	 the	
TOE.	

ASE_INT.1.7C	

For	a	multi-assurance	ST,	the	TOE	overview	shall	describe	the	TSF	organization	in	terms	of	the	
sub-TSFs	defined	in	the	PP-Configuration	the	ST	claims	conformance	to.	

ASE_INT.1.8C	

The	TOE	description	shall	describe	the	physical	scope	of	the	TOE.	

ASE_INT.1.9C	

The	TOE	description	shall	describe	the	logical	scope	of	the	TOE.	

Evaluator	action	elements	

ASE_INT.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ASE_INT.1.2E	

The	evaluator	shall	confirm	that	the	TOE	reference,	the	TOE	overview,	and	the	TOE	description	
are	consistent	with	each	other.	

9.3 Conformance	claims	(ASE_CCL)	

9.3.1 Objectives	

The	 objective	 of	 this	 family	 is	 to	 determine	 the	 validity	 of	 the	 conformance	 claim.	 In	 addition,	 this	
family	specifies	how	STs	are	to	claim	conformance	with	the	PP	or	PP-Configuration.	
9.3.2 ASE_CCL.1	Conformance	claims	

Dependencies:	 ASE_INT.1	ST	introduction	

	 ASE_ECD.1	Extended	components	definition	

	 ASE_REQ.1	Direct	rationale	stated	security	requirements	
Developer	action	elements	

ASE_CCL.1.1D	

The	developer	shall	provide	a	conformance	claim.	

ASE_CCL.1.2D	

The	developer	shall	provide	a	conformance	claim	rationale.	

Content	and	presentation	elements	

ASE_CCL.1.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 34	
	

	

The	conformance	claim	shall	identify	the	edition	of	ISO/IEC	15408	to	which	the	ST	and	the	TOE	
claim	conformance.	

ASE_CCL.1.2C	

The	conformance	claim	shall	describe	the	conformance	of	the	ST	to	ISO/IEC	15408-2	as	either	
ISO/IEC	15408-2	conformant	or	ISO/IEC	15408-2	extended.	

ASE_CCL.1.3C	

The	 conformance	 claim	 shall	 describe	 the	 conformance	of	 the	 ST	as	 either	 “ISO/IEC	15408-3	
conformant”	or	“ISO/IEC	15408-3	extended”.”	

ASE_CCL.1.4C	

The	conformance	claim	shall	be	consistent	with	the	extended	components	definition.	

ASE_CCL.1.5C	

The	conformance	claim	shall	 identify	a	PP-Configuration,	or	all	PPs	and	security	requirement	
packages	to	which	the	ST	claims	conformance.	

ASE_CCL.1.6C	

The	 conformance	 claim	 shall	 describe	 any	 conformance	 of	 the	 ST	 to	 a	 package	 as	 either	
package-conformant	or	package-augmented.	

ASE_CCL.1.7C	

The	conformance	claim	shall	describe	any	conformance	of	the	ST	to	a	PP	as	PP-Conformant.	

ASE_CCL.1.8C	

If	 the	ST	claims	conformance	to	a	PP-Configuration,	 the	conformance	shall	be	 included	 in	the	
conformance	 claim.	 A	 ST	 shall	 claim	 conformance	 to	 exactly	 one	 PP-Configuration	 and	 no	
additional	PP	or	functional	package.	

ASE_CCL.1.9C	

The	 conformance	 claim	 rationale	 shall	 demonstrate	 that	 the	TOE	 type	 is	 consistent	with	 the	
TOE	type	in	the	PP-Configuration	or	PPs	for	which	conformance	is	being	claimed.	

ASE_CCL.1.10C	

The	conformance	claim	rationale	shall	demonstrate	that	the	statement	of	the	security	problem	
definition	 is	 consistent	 with	 the	 statement	 of	 the	 security	 problem	 definition	 in	 the	 PP-
Configuration1,	PPs	and	any	functional	packages	for	which	conformance	is	being	claimed.	

ASE_CCL.1.11C	

The	conformance	claim	rationale	shall	demonstrate	that	the	statement	of	security	objectives	is	
consistent	 with	 the	 statement	 of	 security	 objectives	 in	 the	 PP-Configuration2,	 PPs,	 and	 any	
functional	package	for	which	conformance	is	being	claimed.	

ASE_CCL.1.12C	

	

1	In	practice,	this	refers	to	the	union	of	SPDs	defined	in	the	PP-Configuration	components.	

2	In	practice,	this	refers	to	the	union	of	security	objectives	defined	in	the	PP-Configuration	components.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 35	
	

	

The	 conformance	 claim	 rationale	 shall	 demonstrate	 that	 the	 statement	 of	 security	
requirements	 is	 consistent	 with	 the	 statement	 of	 security	 requirements	 in	 the	 PP-
Configuration3,	PPs,	and	any	functional	packages	for	which	conformance	is	being	claimed.	

ASE_CCL.1.13C	

The	conformance	claim	for	PP(s)	or	a	PP-Configuration	shall	be	exact,	strict,	or	demonstrable	
or	a	list	of	conformance	types.	

ASE_CCL.1.14C	

If	 the	 conformance	 claim	 identifies	 a	 set	 of	 Evaluation	 Methods	 Evaluation	 methods	 and	
Evaluation	Activities	Evaluation	activities	derived	from	ISO/IEC	18045	work	units	that	shall	be	
used	to	evaluate	the	TOE	then	this	set	shall	include	all	those	that	are	included	in	any	package,	
PP,	or	PP-Module	in	a	PP-Configuration	to	which	the	ST	claims	conformance,	and	no	others.	

Evaluator	action	elements	

ASE_CCL.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
9.4 Security	problem	definition	(ASE_SPD)	

9.4.1 Objectives	

This	 part	 of	 the	 ST	 defines	 the	 security	 problem	 to	 be	 addressed	 by	 the	 TOE	 and	 the	 operational	
environment	of	the	TOE.	

Evaluation	 of	 the	 security	 problem	 definition	 is	 required	 to	 demonstrate	 that	 the	 security	 problem	
intended	to	be	addressed	by	the	TOE	and	its	operational	environment,	is	clearly	defined.	
9.4.2 ASE_SPD.1	Security	problem	definition	

Dependencies:	No	dependencies.	

Developer	action	elements	

ASE_SPD.1.1D	

The	developer	shall	provide	a	security	problem	definition.	

Content	and	presentation	elements	

ASE_SPD.1.1C	

The	security	problem	definition	shall	describe	the	threats.	

ASE_SPD.1.2C	

All	threats	shall	be	described	in	terms	of	a	threat	agent,	an	asset,	and	an	adverse	action.	

ASE_SPD.1.3C	

The	security	problem	definition	shall	describe	the	OSPs.	

ASE_SPD.1.4C	

	

3	In	practice,	this	refers	to	the	union	of	SFRs	defined	in	the	PP-Configuration	components.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 36	
	

	

The	 security	 problem	 definition	 shall	 describe	 the	 assumptions	 about	 the	 operational	
environment	of	the	TOE.	

Evaluator	action	elements	

ASE_SPD.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

9.5 Security	objectives	(ASE_OBJ)	

9.5.1 Objectives	

The	 security	 objectives	 are	 a	 concise	 statement	 of	 the	 intended	 response	 to	 the	 security	 problem	
defined	through	the	Security	problem	definition	(ASE_SPD)	family.	

Evaluation	of	the	security	objectives	is	required	to	demonstrate	that	the	security	objectives	adequately	
and	completely	address	the	security	problem	definition,	that	the	division	of	this	problem	between	the	
TOE	and	its	operational	environment	is	clearly	defined.	
9.5.2 Component	levelling	

The	components	in	this	family	are	levelled	on	whether	they	prescribe	only	security	objectives	for	the	
operational	environment	(ASE_OBJ.1),	or	also	security	objectives	for	the	TOE	(ASE_OBJ.2).	
9.5.3 ASE_OBJ.1	Direct	rationale	Security	objectives	for	the	operational	environment	

Dependencies:	No	dependencies	

Developer	action	elements	

ASE_OBJ.1.1D	

The	developer	shall	provide	a	statement	of	security	objectives.	

ASE_OBJ.1.2D	

The	developer	shall	provide	a	security	objectives	rationale.	

Content	and	presentation	elements	

ASE_OBJ.1.1C	

The	statement	of	security	objectives	shall	describe	the	security	objectives	for	the	operational	
environment.	

ASE_OBJ.1.2C	

The	 security	 objectives	 rationale	 shall	 trace	 each	 security	 objective	 for	 the	 operational	
environment	 back	 to	 threats	 countered	 by	 that	 security	 objective,	 OSPs	 enforced	 by	 that	
security	objective,	and	assumptions	upheld	by	that	security	objective.	

ASE_OBJ.1.3C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 for	 the	
operational	environment	uphold	all	assumptions.	

Evaluator	action	elements	

ASE_OBJ.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 37	
	

	

9.5.4 ASE_OBJ.2	Security	objectives	

Dependencies:	ASE_SPD.1	Security	problem	definition	

Developer	action	elements	

ASE_OBJ.2.1D	

The	developer	shall	provide	a	statement	of	security	objectives.	

ASE_OBJ.2.2D	

The	developer	shall	provide	a	security	objectives	rationale.	

Content	and	presentation	elements	

ASE_OBJ.2.1C	

The	 statement	 of	 security	 objectives	 shall	 describe	 the	 security	 objectives	 for	 the	 TOE	 and	 the	
security	objectives	for	the	operational	environment.	

ASE_OBJ.2.2C	

The	security	objectives	rationale	shall	trace	each	security	objective	for	the	TOE	back	to	threats	
countered	by	that	security	objective	and	OSPs	enforced	by	that	security	objective.	

ASE_OBJ.2.3C	

The	security	objectives	rationale	shall	 trace	each	security	objective	 for	 the	operational	environment	
back	 to	 threats	 countered	 by	 that	 security	 objective,	 OSPs	 enforced	 by	 that	 security	 objective,	 and	
assumptions	upheld	by	that	security	objective.	

ASE_OBJ.2.4C	

The	security	objectives	rationale	shall	demonstrate	that	the	security	objectives	counter	all	threats.	

ASE_OBJ.2.5C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 enforce	 all	
OSPs.	

ASE_OBJ.2.6C	

The	 security	 objectives	 rationale	 shall	 demonstrate	 that	 the	 security	 objectives	 for	 the	
operational	environment	uphold	all	assumptions.	

Evaluator	action	elements	

ASE_OBJ.2.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

9.6 Extended	components	definition	(ASE_ECD)	

9.6.1 Objectives	

Extended	 security	 requirements	 are	 requirements	 that	 are	 not	 based	 on	 components	 from	
ISO/IEC	15408-2	or	 this	document,	but	are	based	on	extended	components:	 components	defined	by	
the	ST	author.	

Evaluation	of	the	definition	of	extended	components	is	necessary	to	determine	that	they	are	clear	and	
unambiguous,	 and	 that	 they	 are	 necessary,	 i.e.	 they	 may	 not	 be	 clearly	 expressed	 using	 existing	
ISO/IEC	15408-2	or	this	document	components.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 38	
	

	

9.6.2 ASE_ECD.1	Extended	components	definition	

Dependencies:	No	dependencies.	

Developer	action	elements	

ASE_ECD.1.1D	

The	developer	shall	provide	a	statement	of	security	requirements.	

ASE_ECD.1.2D	

The	developer	shall	provide	an	extended	components	definition.	

Content	and	presentation	elements	

ASE_ECD.1.1C	

The	statement	of	security	requirements	shall	identify	all	extended	security	requirements.	

ASE_ECD.1.2C	

The	 extended	 components	 definition	 shall	 define	 an	 extended	 component	 for	 each	 extended	
security	requirement.	

ASE_ECD.1.3C	

The	extended	components	definition	shall	describe	how	each	extended	component	is	related	to	
the	existing	ISO/IEC	15408	series	components,	families,	and	classes.	

ASE_ECD.1.4C	

The	extended	components	definition	shall	use	the	existing	ISO/IEC	15408	series	components,	
families,	classes,	and	methodology	as	a	model	for	presentation.	

ASE_ECD.1.5C	

The	 extended	 components	 shall	 consist	 of	 measurable	 and	 objective	 elements	 such	 that	
conformance	or	nonconformance	to	these	elements	may	be	demonstrated.	

Evaluator	action	elements	

ASE_ECD.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ASE_ECD.1.2E	

The	 evaluator	 shall	 confirm	 that	 no	 extended	 component	 may	 be	 clearly	 expressed	 using	
existing	components.	

9.7 Security	requirements	(ASE_REQ)	

9.7.1 Objectives	

The	SFRs	form	a	clear,	unambiguous	and	well-defined	description	of	the	expected	security	behaviour	
of	the	TOE.	The	SARs	form	a	clear,	unambiguous	and	canonical	description	of	the	expected	activities	
that	will	be	undertaken	to	gain	assurance	in	the	TOE.	

Evaluation	of	 the	 security	 requirements	 is	 required	 to	ensure	 that	 they	are	 clear,	unambiguous	and	
well-defined.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 39	
	

	

9.7.2 Component	levelling	

The	 components	 in	 this	 family	 are	 levelled	 on	 whether	 they	 are	 stated	 as	 is	 (see	 ASE_REQ.1),	 or	
whether	the	SFRs	are	derived	from	security	objectives	for	the	TOE	(see	ASE_REQ.2.).	
9.7.3 ASE_REQ.1	Direct	Rationale	rationale	security	requirements	

Dependencies:	ASE_ECD.1	Extended	components	definition	

Developer	action	elements	

ASE_REQ.1.1D	

The	developer	shall	provide	a	statement	of	security	requirements.	

ASE_REQ.1.2D	

The	developer	shall	provide	a	security	requirements	rationale.	

Content	and	presentation	elements	

ASE_REQ.1.1C	

The	statement	of	security	requirements	shall	describe	the	SFRs	and	the	SARs.	

ASE_REQ.1.2C	

For	a	single-assurance	ST,	the	statement	of	security	requirements	shall	define	the	global	set	of	
SARs	 that	 apply	 to	 the	 entire	 TOE.	 The	 sets	 of	 SARs	 shall	 be	 consistent	with	 the	 PPs	 or	 PP-
Configuration	to	which	the	ST	claims	conformance.	

ASE_REQ.1.3C	

For	a	multi-assurance	ST,	the	statement	of	security	requirements	shall	define	the	global	set	of	
SARs	that	apply	to	the	entire	TOE	and	the	sets	of	SARs	that	apply	to	each	sub-TSF.	The	sets	of	
SARs	 shall	 be	 consistent	 with	 the	 multi-assurance	 PP-Configuration	 to	 which	 the	 ST	 claims	
conformance.	

ASE_REQ.1.4C	

All	subjects,	objects,	operations,	security	attributes,	external	entities	and	other	terms	that	are	
used	in	the	SFRs	and	the	SARs	shall	be	defined.	

ASE_REQ.1.5C	

The	 statement	 of	 security	 requirements	 shall	 include	 a	natural	 language	description,	 part	 of	
which	describes	how	the	SFRs	combine	 together	 to	provide	security	 functionality	 in	 terms	of	
the	architecture	that	 is	observable	 to	Administrators	and	other	users,	or	 in	 terms	of	 internal	
features	or	properties.	

ASE_REQ.1.6C	

The	 statement	 of	 security	 requirements	 shall	 identify	 all	 operations	 on	 the	 security	
requirements.	

ASE_REQ.1.7C	

All	operations	shall	be	performed	correctly.	

ASE_REQ.1.8C	

Each	 dependency	 of	 the	 security	 requirements	 shall	 either	 be	 satisfied,	 or	 the	 security	
requirements	rationale	shall	justify	the	dependency	not	being	satisfied.	

ASE_REQ.1.9C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 40	
	

	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	(in	conjunction	with	the	
security	objectives	for	the	environment)	counter	all	threats	for	the	TOE.	

ASE_REQ.1.10C	

The	security	requirements	rationale	shall	demonstrate	that	the	SFRs	(in	conjunction	with	the	
security	objectives	for	the	environment)	enforce	all	OSPs.	

ASE_REQ.1.11C	

The	security	requirements	rationale	shall	explain	why	the	SARs	were	chosen.	

ASE_REQ.1.12C	

The	statement	of	security	requirements	shall	be	internally	consistent.	

ASE_REQ.1.13C	

If	the	ST	defines	sets	of	SARs	that	expand	the	sets	of	SARs	of	the	PPs	or	the	PP-Configuration	it	
claims	 conformance	 to,	 the	 security	 requirements	 rationale	 shall	 include	 an	 assurance	
rationale	 that	 justifies	 the	 consistency	 of	 the	 extension	 and	 provides	 a	 rationale	 for	 the	
disposition	of	any	Evaluation	Methods	Evaluation	methods	and	Evaluation	Activities	Evaluation	
activities	identified	in	the	conformance	statement	that	are	affected	by	the	extension	of	the	sets	
of	SARs	

Evaluator	action	elements	

ASE_REQ.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
9.7.4 ASE_REQ.2	Derived	security	requirements	

Dependencies:	 ASE_OBJ.2	Security	objectives	

	 ASE_ECD.1	Extended	components	definition	
Developer	action	elements	

ASE_REQ.2.1D	

The	developer	shall	provide	a	statement	of	security	requirements.	

ASE_REQ.2.2D	

The	developer	shall	provide	a	security	requirements	rationale.	

Content	and	presentation	elements	

ASE_REQ.2.1C	

The	statement	of	security	requirements	shall	describe	the	SFRs	and	the	SARs.	

ASE_REQ.2.2C	

For	a	single-assurance	ST,	the	statement	of	security	requirements	shall	define	the	global	set	of	SARs	
that	apply	to	the	entire	TOE.	The	sets	of	SARs	shall	be	consistent	with	the	PPs	or	PP-Configuration	to	
which	the	ST	claims	conformance.	

ASE_REQ.2.3C	

For	a	multi-assurance	ST,	 the	statement	of	security	requirements	shall	define	 the	global	set	of	SARs	
that	apply	to	the	entire	TOE	and	the	sets	of	SARs	that	apply	to	each	sub-TSF.	The	sets	of	SARs	shall	be	
consistent	with	the	multi-assurance	PP-Configuration	to	which	the	ST	claims	conformance.	

ASE_REQ.2.4C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 41	
	

	

All	subjects,	objects,	operations,	security	attributes,	external	entities	and	other	terms	that	are	used	in	
the	SFRs	and	the	SARs	shall	be	defined.	

ASE_REQ.2.5C	

The	statement	of	security	requirements	shall	identify	all	operations	on	the	security	requirements.	

ASE_REQ.2.6C	

All	operations	shall	be	performed	correctly.	

ASE_REQ.2.7C	

Each	dependency	of	the	security	requirements	shall	either	be	satisfied,	or	the	security	requirements	
rationale	shall	justify	the	dependency	not	being	satisfied.	

ASE_REQ.2.8C	

The	 security	 requirements	 rationale	 shall	 demonstrate	 that	 the	 SFRs	 meet	 all	 security	
objectives	for	the	TOE.	

ASE_REQ.2.9C	

The	security	requirements	rationale	shall	explain	why	the	SARs	were	chosen.	

ASE_REQ.2.10C	

The	statement	of	security	requirements	shall	be	internally	consistent.	

ASE_REQ.2.11C	

If	 the	ST	defines	 sets	of	 SARs	 that	 expand	 the	 sets	of	 SARs	of	 the	PPs	or	PP-Configuration	 it	 claims	
conformance	to,	the	security	requirements	rationale	shall	include	an	assurance	rationale	that	justifies	
the	consistency	of	the	extension	and	provides	a	rationale	for	the	disposition	of	any	Evaluation	Methods	
Evaluation	 methods	 and	 Evaluation	 Activities	 Evaluation	 activities	 identified	 in	 the	 conformance	
statement	that	are	affected	by	the	extension	of	the	sets	of	SARs.	

Evaluator	action	elements	

ASE_REQ.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

9.8 TOE	summary	specification	(ASE_TSS)	

9.8.1 Objectives	

The	 TOE	 summary	 specification	 enables	 evaluators	 and	 potential	 consumers	 to	 gain	 a	 general	
understanding	of	how	the	TOE	is	implemented.	

Evaluation	 of	 the	 TOE	 summary	 specification	 is	 necessary	 to	 determine	 whether	 it	 is	 adequately	
described	how	the	TOE:	

—	 meets	its	SFRs;	

—	 protects	itself	against	interference,	logical	tampering	and	bypass;	

and	 whether	 the	 TOE	 summary	 specification	 is	 consistent	 with	 other	 narrative	 descriptions	 of	 the	
TOE.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 42	
	

	

9.8.2 Component	levelling	

The	components	in	this	family	are	levelled	on	whether	the	TOE	summary	specification	only	needs	to	
describe	 how	 the	 TOE	 meets	 the	 SFRs,	 or	 whether	 the	 TOE	 summary	 specification	 also	 needs	 to	
describe	how	the	TOE	protects	itself	against	logical	tampering	and	bypass.	This	additional	description	
may	 be	 used	 in	 special	 circumstances	 where	 there	might	 be	 a	 specific	 concern	 regarding	 the	 TOE	
security	architecture.	
9.8.3 ASE_TSS.1	TOE	summary	specification	

Dependencies:	 ASE_INT.1	ST	introduction	

	 ASE_REQ.1	Direct	rationale	stated	security	requirements	

	 ADV_FSP.1	Basic	functional	specification	
Developer	action	elements	

ASE_TSS.1.1D	

The	developer	shall	provide	a	TOE	summary	specification.	

Content	and	presentation	elements	

ASE_TSS.1.1C	

The	TOE	summary	specification	shall	describe	how	the	TOE	meets	each	SFR.	

Evaluator	action	elements	

ASE_TSS.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ASE_TSS.1.2E	

The	 evaluator	 shall	 confirm	 that	 the	 TOE	 summary	 specification	 is	 consistent	 with	 the	 TOE	
overview	and	the	TOE	description.	
9.8.4 ASE_TSS.2	TOE	summary	specification	with	architectural	design	summary	

Dependencies:	 ASE_INT.1	ST	introduction	

	 ASE_REQ.1	Direct	rationale	stated	security	requirements	

	 ADV_ARC.1	Security	architecture	description	
Developer	action	elements	

ASE_TSS.2.1D	

The	developer	shall	provide	a	TOE	summary	specification.	

Content	and	presentation	elements	

ASE_TSS.2.1C	

The	TOE	summary	specification	shall	describe	how	the	TOE	meets	each	SFR.	

ASE_TSS.2.2C	

The	TOE	summary	specification	shall	describe	how	the	TOE	protects	itself	against	interference	
and	logical	tampering.	

ASE_TSS.2.3C	

The	TOE	summary	specification	shall	describe	how	the	TOE	protects	itself	against	bypass.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 43	
	

	

Evaluator	action	elements	

ASE_TSS.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ASE_TSS.2.2E	

The	evaluator	shall	confirm	that	the	TOE	summary	specification	is	consistent	with	the	TOE	overview	
and	the	TOE	description.	

9.9 Consistency	of	composite	product	Security	Target	(ASE_COMP)	

9.9.1 Objectives	

The	aim	of	this	family	is	to	determine	whether	the	Security	Target	of	the	composite	product4	does	not	
contradict	the	Security	Target	of	the	related	base	component5,6.	
9.9.2 Component	levelling	

This	family	contains	only	one	component.	
9.9.3 ASE_COMP.1	Consistency	of	Security	Target	

 Dependencies:	No	dependencies	
9.9.49.9.3 Application	notes	

A	Security	Target	for	the	composite	product	has	to	be	written	and	evaluated.	

The	 composite	product	 evaluator	has	 to	 examine	 that	 the	 Security	Target	 of	 the	 composite	product	
does	not	contradict	the	Security	Target	of	the	related	base	component.	In	particular,	it	means	that	the	
composite	 product	 evaluator	 has	 to	 examine	 the	 composite	 product	 Security	 Target	 and	 the	 base	
component	 Security	 Target	 for	 any	 conflicting	 assumptions,	 compatibility	 of	 security	 objectives,	
security	requirements	and	security	functionality	needed	by	the	dependent	component.	

The	 composite	 product	 evaluation	 sponsor	 shall	 ensure	 that	 the	 Security	 Target	 of	 the	 base	
component	is	available	for	the	dependent	component	developer,	for	the	composite	product	evaluator	
and	for	the	composite	product	evaluation	authority.	The	information	available	in	the	public	version	of	
the	base	component	Security	Target	may	not	be	sufficient.	

These	application	notes	aid	 the	developer	 to	 create	as	well	 as	 the	evaluator	 to	 analyse	a	 composite	
product	Security	Target	and	describe	a	general	methodology	for	it.	

In	order	 to	create	a	composite	product	Security	Target,	 the	developer	should	perform	the	 following	
steps:	

Step	 1:	 The	 developer	 formulates	 a	 preliminary	 Security	 Target	 for	 the	 composite	 product	 (the	
composite-STcomposite-ST)	using	the	standard	code	of	practice.	The	composite-STcomposite-ST	can	
be	 formulated	 independently	 of	 the	 Security	 Target	 of	 the	 composite	 product’s	 related	 base	
component	(the	base-ST)	–	at	least	as	long	as	there	are	no	formal	PP	conformance	claims.	

	

4	denoted	by	composite	product	Security	Target	or	composite-STcomposite-ST	in	the	following	

5	denoted	by	base	component	Security	Target	or	base-ST	in	the	following		

6	Generally,	a	Security	Target	expresses	a	security	policy	for	the	TOE	defined.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 44	
	

	

Step	2:	The	developer	determines	the	overlap	between	the	base-ST	and	the	composite-STcomposite-
ST	through	analysing	and	comparing	their	respective	TOE	Security	Functionality	(TSF)7	8.	

Step	 3:	 The	 developer	 determines	 under	 which	 conditions	 he	 can	 trust	 in	 and	 rely	 on	 the	 base	
component-TSF	being	used	by	the	Composite-STcomposite-ST	without	a	new	examination.	

Having	 undertaken	 these	 steps	 the	 developer	 completes	 the	 preliminary	 Security	 Target	 for	 the	
composite	product.	

It	 is	not	mandatory	 that	 the	composite	product	and	 its	 related	base	component	are	being	evaluated	
according	to	the	same	edition	of	ISO/IEC	15408.	It	is	due	to	the	fact	that	the	dependent	component	of	
the	composite	product	can	rely	on	some	security	services	of	the	base	component,	if	(i)	the	assurance	
level	of	the	base	component	covers	the	intended	assurance	level	of	the	composite	product	and	(ii)	the	
base	component	evaluation	is	valid	(i.e.	accepted	by	the	base	component	evaluation	authority)	and	up-
to-date.	 Equivalence	 of	 single	 assurance	 components	 (and,	 hence,	 of	 assurance	 levels)	 belonging	 to	
different	 ISO/IEC	15408	 series	 editions	 have	 to	 be	 established	 /	 acknowledged	 by	 the	 composite	
product	evaluation	authority.	

If	conformance	to	a	PP	is	claimed,	e.g.	a	composite	product	Security	Target	claims	conformance	to	a	PP	
(that	 possibly	 claims	 conformance	 to	 a	 further	 PP),	 the	 consistency	 check	 can	 be	 reduced	 to	 the	
elements	of	the	Security	Target	having	not	already	been	covered	by	these	PPs.	However,	in	general	the	
fact	 of	 compliance	 to	 a	PP	 is	not	 sufficient	 to	 avoid	 inconsistencies.	Assume	 the	 following	 situation,	
where	→	stands	for	“complies	with”:	

composite-STcomposite-ST	→	PP	1	→	PP	2	←	base-ST	

PP	1	may	require	any	kind	of	conformance9,	but	this	does	not	affect	the	‘additional	elements’	that	the	
base-ST	may	introduce	beyond	PP	2.	In	conclusion,	these	additions	are	not	necessarily	consistent	with	
the	composite-STcomposite-ST’s	additions	chosen	beyond	PP	1.	There	is	no	scenario	that	ensures	their	
consistency	‘by	construction’.	

Note	 that	consistency	may	be	no	direct	matching:	Objectives	 for	 the	base	component’s	environment	
may	become	objectives	for	the	composite	TOE.	
9.9.59.9.4 ASE_COMP.1	Consistency	of	Security	Target	

Dependencies:	No	dependencies	

9.9.5.1 Developer	action	elements	
9.9.5.1.1 ASE_COMP.1.1D	

The	 developer	 shall	 provide	 a	 statement	 of	 compatibility	 between	 the	 composite	 product	
Security	 Target	 and	 the	 base	 component	 Security	 Target.	 This	 statement	 may	 be	 provided	
within	the	composite	product	Security	Target.	

9.9.5.2 Content	and	presentation	elements	

9.9.5.2.1 ASE_COMP.1.1C	

	

7	because	the	TSF	enforce	the	Security	Target	(together	with	the	organisational	measures	enforcing	the	security	objectives	
for	the	operational	environment	of	the	TOE).	

8	The	comparison	shall	be	performed	on	the	abstraction	level	of	SFRs.	If	the	developer	defined	security	functionality	groups	
(TSF-groups)	 in	 the	 TSS	 part	 of	 his	 Security	 Target,	 the	 evaluator	 should	 also	 consider	 them	 in	 order	 to	 get	 a	 better	
understanding	for	the	context	of	the	security	services	offered	by	the	TOE.		

9	e.g.	“strict”,	“exact”	or	“demonstrable”	according	to	ISO/IEC	15408	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 45	
	

	

The	statement	of	 compatibility	 shall	describe	 the	separation	of	 the	base	component-TSF	 into	
relevant	base	component-TSF	being	used	by	the	composite	product	Security	Target	and	others.	

9.9.5.2.2 ASE_COMP.1.2C	

The	 statement	of	 compatibility	between	 the	 composite	product	 Security	Target	 and	 the	base	
component	Security	Target	shall	show	(e.g.	in	form	of	a	mapping)	that	the	Security	Targets	of	
the	composite	product	and	of	 the	related	base	component	match,	 i.e.	 that	 there	 is	no	conflict	
between	 security	 environments,	 security	 objectives,	 and	 security	 requirements	 of	 the	
composite	product	Security	Target	and	the	base	component	Security	Target.	It	may	be	provided	
by	 indicating	 the	 concerned	 elements	 directly	 in	 the	 composite	 product	 Security	 Target	
followed	by	explanatory	text,	if	necessary.	

9.9.5.3 Evaluator	action	elements	

9.9.5.3.1 ASE_COMP.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

10 Class	ADV:	Development	

10.1 Introduction	

The	 requirements	 of	 the	 Development	 class	 provide	 information	 about	 the	 TOE.	 The	 knowledge	
obtained	by	this	information	is	used	as	the	basis	for	conducting	vulnerability	analysis	and	testing	upon	
the	TOE,	as	described	in	the	AVA	and	ATE	classes.	

The	Development	class	encompasses	seven	families	of	requirements	for	structuring	and	representing	
the	TSF	at	various	levels	and	varying	forms	of	abstraction.	These	families	include:	

—	 requirements	 for	 the	 description	 (at	 the	 various	 levels	 of	 abstraction)	 of	 the	 design	 and	
implementation	of	the	SFRs	(ADV_FSP,	ADV_TDS,	ADV_IMP	and	ADV_COMP)	

—	 requirements	for	the	description	of	the	architecture-oriented	features	of	domain	separation,	TSF	
self-protection	and	non-bypassability	of	the	security	functionality	(ADV_ARC)	

—	 requirements	 for	 a	 security	 policy	 model	 and	 for	 correspondence	 mappings	 between	 security	
policy	model	and	the	functional	specification	(ADV_SPM)	

—	 requirements	 on	 the	 internal	 structure	 of	 the	 TSF,	 which	 covers	 aspects	 such	 as	 modularity,	
layering,	and	minimization	of	complexity	(ADV_INT)	

When	 documenting	 the	 security	 functionality	 of	 a	 TOE,	 there	 are	 two	 properties	 that	 need	 to	 be	
demonstrated.	The	first	property	is	that	the	security	functionality	works	correctly;	that	is,	it	performs	
as	 specified.	 The	 second	 property,	 and	 one	 that	 is	 arguably	 harder	 to	 demonstrate,	 is	 that	 the	 TOE	
cannot	be	used	in	a	way	such	that	the	security	functionality	can	be	corrupted	or	bypassed.	These	two	
properties	 require	 somewhat	 different	 approaches	 in	 analysis,	 and	 so	 the	 families	 in	 ADV	 are	
structured	 to	 support	 these	 different	 approaches.	 The	 families	 Functional	 specification	 (ADV_FSP),	
TOE	 design	 (ADV_TDS),	 Implementation	 representation	 (ADV_IMP),	 and	 Security	 policy	 modelling	
(ADV_SPM)	 deal	with	 the	 first	 property:	 the	 specification	 of	 the	 security	 functionality.	 The	 families	
Security	 Architecture	 (ADV_ARC)	 and	 TSF	 internals	 (ADV_INT)	 deal	 with	 the	 second	 property:	 the	
specification	of	the	design	of	the	TOE	demonstrating	the	security	functionality	cannot	be	corrupted	or	
bypassed.	 It	 should	be	noted	 that	both	properties	need	 to	be	 realized:	 the	more	confidence	one	has	
that	the	properties	are	satisfied,	the	more	trustworthy	the	TOE	is.	The	TSF	of	a	composite	product	are	
represented	at	various	levels	of	abstraction	in	the	families	of	the	development	class	ADV.	The	family	
Composite	design	compliance	(ADV_COMP)	determines	whether	 the	requirements	on	the	dependent	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 46	
	

	

component,	 imposed	by	the	related	base	component,	are	fulfilled	in	a	composite	product.	Due	to	the	
distribution	of	the	TSF	of	a	composite	product	to	various	 levels	 in	the	families	of	 the	class	ADV,	this	
family	 is	 not	 represented	 in	 Figure	7.	 The	 components	 in	 the	 families	 are	 designed	 so	 that	 more	
assurance	can	be	gained	as	the	components	hierarchically	increase.	

The	 paradigm	 for	 the	 families	 targeted	 at	 the	 first	 property	 is	 one	 of	 design	 decomposition.	 At	 the	
highest	 level,	 there	is	a	functional	specification	of	the	TSF	in	terms	of	 its	 interfaces	(describing	what	
the	TSF	does	in	terms	of	requests	to	the	TSF	for	services	and	resulting	responses),	decomposing	the	
TSF	 into	 smaller	 units	 (dependent	 on	 the	 assurance	 desired	 and	 the	 complexity	 of	 the	 TOE)	 and	
describing	 how	 the	 TSF	 accomplishes	 its	 functions	 (to	 a	 level	 of	 detail	 commensurate	 with	 the	
assurance	 level),	 and	 showing	 the	 implementation	 of	 the	 TSF.	 A	 formal	 model	 of	 the	 security	
behaviour	also	may	be	given.	All	 levels	of	decomposition	are	used	 in	determining	 the	 completeness	
and	accuracy	of	all	other	levels,	ensuring	that	the	levels	are	mutually	supportive.	The	requirements	for	
the	 various	 TSF	 representations	 are	 separated	 into	 different	 families,	 to	 allow	 the	 PP/ST	 author	 to	
specify	 which	 TSF	 representations	 are	 required.	 The	 level	 chosen	 will	 dictate	 the	 assurance	
desired/gained.	

Figure	7	indicates	the	relationships	among	the	various	TSF	representations	of	the	ADV	class,	as	well	as	
their	 relationships	 with	 other	 classes.	 As	 the	 figure	 indicates,	 the	 APE	 and	 ASE	 classes	 define	 the	
requirements	for	the	correspondence	between	the	SFRs	and	the	security	objectives	for	the	TOE.	Class	
ASE	also	defines	requirements	for	the	correspondence	between	both	the	security	objectives	and	SFRs,	
and	for	the	TOE	summary	specification	which	explains	how	the	TOE	meets	its	SFRs.	The	activities	of	
ALC_CMC.5.2E	include	the	verification	that	the	TSF	that	is	tested	under	the	ATE	and	AVA	classes	is	in	
fact	the	one	described	by	all	of	the	ADV	decomposition	levels.	

	

Figure	7	—	Relationships	of	ADV	constructs	to	one	another	and	to	other	families	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 47	
	

	

The	requirements	for	all	other	correspondence	shown	in	Figure	7	are	defined	in	the	ADV	class	for	the	
TOE.	The	Security	policy	modelling	(ADV_SPM)	family	defines	the	requirements	for	formally	modelling	
selected	 SFRs,	 and	 providing	 correspondence	 between	 the	 functional	 specification	 and	 the	 formal	
model.	Each	assurance	family	specific	to	a	TSF	representation	(i.e.	Functional	specification	(ADV_FSP),	
TOE	design	(ADV_TDS)	and	Implementation	representation	(ADV_IMP))	defines	requirements	relating	
that	 TSF	 representation	 to	 the	 SFRs.	 All	 decompositions	 must	 accurately	 reflect	 all	 other	
decompositions	 (i.e.	 be	 mutually	 supportive);	 the	 developer	 supplies	 the	 tracings	 in	 the	 last	 .C	
elements	of	the	components.	Assurance	relating	to	this	factor	is	obtained	during	the	analysis	for	each	
of	 the	 levels	of	decomposition	by	referring	 to	other	 levels	of	decomposition	 (in	a	 recursive	 fashion)	
while	the	analysis	of	a	particular	level	of	decomposition	is	being	performed;	the	evaluator	verifies	the	
correspondence	 as	 part	 of	 the	 second	 E	 element.	 The	 understanding	 gained	 from	 these	 levels	 of	
decomposition	form	the	basis	of	the	functional	and	penetration	testing	efforts.	

The	ADV_INT	family	is	not	represented	in	this	figure,	as	it	is	related	to	the	internal	structure	of	the	TSF,	
and	 is	only	 indirectly	 related	 to	 the	process	of	 refinement	of	 the	TSF	 representations.	 Similarly,	 the	
ADV_ARC	 family	 is	 not	 represented	 in	 the	 figure	 because	 it	 relates	 to	 the	 architectural	 soundness,	
rather	 than	 representation,	 of	 the	 TSF.	 Both	 ADV_INT	 and	 ADV_ARC	 relate	 to	 the	 analysis	 of	 the	
property	that	the	TOE	cannot	be	made	to	circumvent	or	corrupt	its	security	functionality.	

The	TOE	security	 functionality	 (TSF)	consists	of	all	parts	of	 the	TOE	that	have	 to	be	relied	upon	 for	
enforcement	of	the	SFRs.	The	TSF	includes	both	functionality	that	directly	enforces	the	SFRs,	as	well	as	
functionality	 that,	while	not	directly	enforcing	 the	SFRs,	 contributes	 to	 their	enforcement	 in	a	more	
indirect	 manner,	 including	 functionality	 with	 the	 capability	 to	 cause	 the	 SFRs	 to	 be	 violated.	 This	
includes	portions	of	the	TOE	that	are	invoked	on	start-up	that	are	responsible	for	putting	the	TSF	into	
its	initial	secure	state.	

Several	 important	 concepts	were	 used	 in	 the	 development	 of	 the	 components	 of	 the	 ADV	 families.	
These	concepts,	while	introduced	briefly	here,	are	explained	more	fully	in	the	application	notes	for	the	
families.	

One	 over-riding	 notion	 is	 that,	 as	 more	 information	 becomes	 available,	 greater	 assurance	 can	 be	
obtained	 that	 the	security	 functionality	1)	 is	correctly	 implemented;	2)	cannot	be	corrupted;	and	3)	
cannot	 be	 bypassed.	 This	 is	 done	 through	 the	 verification	 that	 the	 documentation	 is	 correct	 and	
consistent	with	other	documentation,	and	by	providing	information	that	can	be	used	to	ensure	that	the	
testing	activities	(both	functional	and	penetration	testing)	are	comprehensive.	This	is	reflected	in	the	
levelling	of	the	components	of	the	families.	In	general,	components	are	levelled	based	on	the	amount	of	
information	that	is	to	be	provided	(and	subsequently	analysed).	

While	not	true	for	all	TOEs,	it	is	generally	the	case	that	the	TSF	is	sufficiently	complex	that	there	are	
portions	 of	 the	 TSF	 that	 deserve	 more	 intense	 examination	 than	 other	 portions	 of	 the	 TSF.	
Determining	those	portions	is	unfortunately	somewhat	subjective,	thus	terminology	and	components	
have	 been	 defined	 such	 that	 as	 the	 level	 of	 assurance	 increases,	 the	 responsibility	 for	 determining	
what	portions	of	the	TSF	need	to	be	examined	in	detail	shifts	from	the	developer	to	the	evaluator.	To	
aid	in	expressing	this	concept,	the	following	terminology	is	introduced.	It	should	be	noted	that	in	the	
families	of	the	class,	this	terminology	is	used	when	expressing	SFR-related	portions	of	the	TOE	(that	is,	
elements	and	work	units	embodied	in	the	Functional	specification	(ADV_FSP),	TOE	design	(ADV_TDS),	
and	 Implementation	 representation	 (ADV_IMP)	 families).	 While	 the	 general	 concept	 (that	 some	
portions	 of	 the	 TOE	 are	 more	 interesting	 than	 others)	 applies	 to	 other	 families,	 the	 criteria	 are	
expressed	differently	in	order	to	obtain	the	assurance	required.	

All	portions	of	the	TSF	are	security	relevant,	meaning	that	they	must	preserve	the	security	of	the	TOE	
as	expressed	by	the	SFRs	and	requirements	for	domain	separation	and	non-bypassability.	One	aspect	
of	security	relevance	is	the	degree	to	which	a	portion	of	the	TSF	enforces	a	security	requirement.	Since	
different	 portions	 of	 the	 TOE	 play	 different	 roles	 (or	 no	 apparent	 role	 at	 all)	 in	 enforcing	 security	
requirements,	this	creates	a	continuum	of	SFR	relevance:	at	one	end	of	this	continuum	are	portions	of	
the	TOE	that	are	termed	SFR-enforcing.	Such	portions	play	a	direct	role	 in	 implementing	any	SFR	on	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 48	
	

	

the	TOE.	Such	SFRs	refer	to	any	functionality	provided	by	one	of	the	SFRs	contained	in	the	ST.	It	should	
be	noted	that	the	definition	of	plays	a	role	in	 for	SFR-enforcing	functionality	is	impossible	to	express	
quantitatively.	 For	 example,	 in	 the	 implementation	 of	 a	 Discretionary	 Access	 Control	 (DAC)	
mechanism,	 a	 very	 narrow	 view	 of	 SFR-enforcing	 might	 be	 the	 several	 lines	 of	 code	 that	 actually	
perform	 the	 check	 of	 a	 subject's	 attributes	 against	 the	 object's	 attributes.	 A	 broader	 view	 would	
include	the	software	entity	(e.g.	C	 function)	 that	contained	the	several	 lines	of	code.	A	broader	view	
still	would	include	callers	of	the	C	function,	since	they	would	be	responsible	for	enforcing	the	decision	
returned	 by	 the	 attribute	 check.	 A	 still	 broader	 view	 would	 include	 any	 code	 in	 the	 call	 tree	 (or	
programming	 equivalent	 for	 the	 implementation	 language	 used)	 for	 that	 C	 function	 (e.g.	 a	 sort	
function	 that	 sorted	 access	 control	 list	 entries	 in	 a	 first-match	 algorithm	 implementation).	 At	 some	
point,	the	component	is	not	so	much	enforcing	 the	security	policy	but	rather	plays	a	supporting	role;	
such	 components	 are	 termed	 SFR	 supporting.	 One	 of	 the	 characteristics	 of	 SFR-supporting	
functionality	is	that	it	 is	trusted	to	preserve	the	correctness	of	the	SFR	implementation	by	operating	
without	 error.	 Such	 functionality	 may	 be	 depended	 on	 by	 SFR-enforcing	 functionality,	 but	 the	
dependence	is	generally	at	a	functional	level;	for	example,	memory	management,	buffer	management,	
etc.	 Further	 down	 on	 the	 security	 relevance	 continuum	 is	 functionality	 termed	 SFR	 non-interfering.	
Such	 functionality	has	no	role	 in	 implementing	 the	SFRs,	and	 is	 likely	part	of	 the	TSF	because	of	 its	
environment;	for	example,	any	code	running	in	a	privileged	hardware	mode	on	an	operating	system.	It	
needs	 to	be	 considered	part	of	 the	TSF	because,	 if	 compromised	 (or	 replaced	by	malicious	 code),	 it	
could	compromise	the	correct	operation	of	an	SFR	by	virtue	of	its	operating	in	the	privileged	hardware	
mode.	An	example	of	SFR	non-interfering	functionality	might	be	a	set	of	mathematical	 floating	point	
operations	implemented	in	kernel	mode	for	speed	considerations.	

The	architecture	family	(Security	Architecture	(ADV_ARC))	provides	for	requirements	and	analysis	of	
the	 TOE	 based	 on	 properties	 of	 domain	 separation,	 self-protection,	 and	 non-bypassability.	 These	
properties	relate	to	the	SFRs	in	that,	if	these	properties	are	not	present,	it	will	likely	lead	to	the	failure	
of	 mechanisms	 implementing	 SFRs.	 Functionality	 and	 design	 relating	 to	 these	 properties	 is	 not	
considered	 a	 part	 of	 the	 continuum	 described	 above,	 but	 instead	 is	 treated	 separately	 due	 to	 its	
fundamentally	different	nature	and	analysis	requirements.	

The	 difference	 in	 analysis	 of	 the	 implementation	 of	 SFRs	 (SFR-enforcing	 and	 SFR-supporting	
functionality)	and	the	implementation	of	somewhat	fundamental	security	properties	of	the	TOE,	which	
include	 the	 initialisation,	 self-protection,	 and	 non-bypassability	 concerns,	 is	 that	 the	 SFR-related	
functionality	 is	more	 or	 less	 directly	 visible	 and	 relatively	 easy	 to	 test,	 while	 the	 above-mentioned	
properties	 require	 varying	 degrees	 of	 analysis	 on	 a	much	 broader	 set	 of	 functionality.	 Further,	 the	
depth	of	analysis	for	such	properties	will	vary	depending	on	the	design	of	the	TOE.	The	ADV	families	
are	 constructed	 to	 address	 this	 by	 a	 separate	 family	 (Security	 Architecture	 (ADV_ARC))	 devoted	 to	
analysis	 of	 the	 initialisation,	 self-protection,	 and	 non-bypassability	 requirements,	 while	 the	 other	
families	are	concerned	with	analysis	of	the	functionality	supporting	SFRs.	

Even	in	cases	where	different	descriptions	are	necessary	for	the	multiple	levels	of	abstraction,	it	is	not	
absolutely	necessary	for	each	and	every	TSF	representation	to	be	 in	a	separate	document.	 Indeed,	 it	
may	be	the	case	that	a	single	document	meets	the	documentation	requirements	for	more	than	one	TSF	
representation,	 since	 it	 is	 the	 information	 about	 each	of	 these	TSF	 representations	 that	 is	 required,	
rather	 than	 the	 resulting	 document	 structure.	 In	 cases	 where	 multiple	 TSF	 representations	 are	
combined	within	a	single	document,	 the	developer	should	 indicate	which	portions	of	 the	documents	
meet	which	requirements.	

Three	 types	 of	 specification	 style	 are	mandated	by	 this	 class:	 informal,	 semiformal	 and	 formal.	 The	
functional	 specification	 and	 TOE	 design	 documentation	 are	 always	 written	 in	 either	 informal	 or	
semiformal	 style.	 A	 semiformal	 style	 reduces	 the	 ambiguity	 in	 these	 documents	 over	 an	 informal	
presentation.	A	formal	specification	may	also	be	required	in	addition	to	the	semi-formal	presentation;	
the	value	is	that	a	description	of	the	TSF	in	more	than	one	way	will	add	increased	assurance	that	the	
TSF	has	been	completely	and	accurately	specified.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 49	
	

	

An	 informal	 specification	 is	written	 as	 prose	 in	 natural	 language.	 Natural	 language	 is	 used	 here	 as	
meaning	 communication	 in	 any	 commonly	 spoken	 tongue	 (e.g.	 Spanish,	 German,	 French,	 English,	
Dutch).	 An	 informal	 specification	 is	 not	 subject	 to	 any	 notational	 or	 special	 restrictions	 other	 than	
those	 required	 as	 ordinary	 conventions	 for	 that	 language	 (e.g.	 grammar	 and	 syntax).	 While	 no	
notational	restrictions	apply,	the	informal	specification	is	also	required	to	provide	defined	meanings	
for	terms	that	are	used	in	a	context	other	than	that	accepted	by	normal	usage.	

The	 difference	 between	 semiformal	 and	 informal	 documents	 is	 only	 a	 matter	 of	 formatting	 or	
presentation:	 a	 semiformal	 notation	 includes	 such	 things	 as	 an	 explicit	 glossary	 of	 terms,	 a	
standardised	presentation	format,	etc.	A	semiformal	specification	is	written	to	a	standard	presentation	
template.	 The	 presentation	 should	 use	 terms	 consistently	 if	 written	 in	 a	 natural	 language.	 The	
presentation	 may	 also	 use	 more	 structured	 languages/diagrams	 (e.g.	 data-flow	 diagrams,	 state	
transition	 diagrams,	 entity-relationship	 diagrams,	 data	 structure	 diagrams,	 and	 process	 or	 program	
structure	diagrams).	Whether	based	on	diagrams	or	natural	 language,	 a	 set	 of	 conventions	must	be	
used	in	the	presentation.	The	glossary	explicitly	identifies	the	words	that	are	being	used	in	a	precise	
and	constant	manner;	similarly,	the	standardised	format	implies	that	extreme	care	has	been	taken	in	
methodically	 preparing	 the	 document	 in	 a	 manner	 that	 maximises	 clarity.	 It	 should	 be	 noted	 that	
fundamentally	different	portions	of	the	TSF	may	have	different	semiformal	notation	conventions	and	
presentation	 styles	 (as	 long	 as	 the	 number	 of	 different	 “semiformal	 notations”	 is	 small);	 this	 still	
conforms	to	the	concept	of	a	semiformal	presentation.	

A	formal	specification	is	written	in	a	notation	based	upon	well-established	mathematical	concepts,	and	
is	 typically	 accompanied	 by	 supporting	 explanatory	 (informal)	 prose.	 These	mathematical	 concepts	
are	used	 to	define	 the	syntax	and	semantics	of	 the	notation	and	 the	proof	 rules	 that	support	 logical	
reasoning.	 The	 syntactic	 and	 semantic	 rules	 supporting	 a	 formal	 notation	 should	 define	 how	 to	
recognize	constructs	unambiguously	and	determine	their	meaning.	There	needs	to	be	evidence	that	it	
is	 impossible	 to	 derive	 contradictions,	 and	 all	 rules	 supporting	 the	 notation	 need	 to	 be	 defined	 or	
referenced.	

Figure	8	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	

	

Figure	8	—	ADV:	Development	class	decomposition	

In	case	of	a	multi-assurance	evaluation	the	requirements	for	the	description	(at	the	various	levels	of	
abstraction)	 of	 the	 design	 and	 implementation	 of	 the	 SFRs	 (ADV_FSP,	 ADV_TDS,	 ADV_IMP	 and	
ADV_COMP)	 will	 be	 presented	 for	 the	 sub-TSF	 of	 the	 TOE.	 The	 architecture	 family	 (Security	
Architecture	 (ADV_ARC))	provides	 for	 requirements	and	analysis	of	 the	TOE	based	on	properties	of	
domain	 separation,	 self-protection,	 and	 non-bypassability	 which	 also	 may	 hold	 for	 boundaries	
between	the	sub-TSF.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 50	
	

	

10.2 Security	Architecture	(ADV_ARC)	

10.2.1 Objectives	

The	objective	of	this	family	is	for	the	developer	to	provide	a	description	of	the	security	architecture	of	
the	 TSF.	 This	 will	 allow	 analysis	 of	 the	 information	 that,	 when	 coupled	 with	 the	 other	 evidence	
presented	for	the	TSF,	will	confirm	the	TSF	achieves	the	desired	properties.	The	security	architecture	
descriptions	 supports	 the	 implicit	 claim	 that	 security	 analysis	 of	 the	 TOE	 can	 be	 achieved	 by	
examining	 the	 TSF;	 without	 a	 sound	 architecture,	 the	 entire	 TOE	 functionality	 would	 have	 to	 be	
examined.	
10.2.2 Component	levelling	

This	family	contains	only	one	component.	
10.2.3 Application	notes	

The	properties	of	self-protection,	domain	separation,	and	non-bypassability	are	distinct	from	security	
functionality	 expressed	 by	 ISO/IEC	 15408-2	 SFRs	 because	 self-protection	 and	 non-bypassability	
largely	have	no	directly	observable	interface	at	the	TSF.	Rather,	they	are	properties	of	the	TSF	that	are	
achieved	through	the	design	of	the	TOE	and	TSF,	and	enforced	by	the	correct	implementation	of	that	
design.	

The	approach	used	 in	 this	 family	 is	 for	 the	developer	 to	design	and	provide	a	TSF	 that	 exhibits	 the	
above-mentioned	 properties,	 and	 to	 provide	 evidence	 (in	 the	 form	of	 documentation)	 that	 explains	
these	properties	of	the	TSF.	This	explanation	is	provided	at	the	same	level	of	detail	as	the	description	
of	 the	 SFR-enforcing	 elements	 of	 the	 TOE	 in	 the	 TOE	 design	 document.	 The	 evaluator	 has	 the	
responsibility	for	looking	at	the	evidence	and,	coupled	with	other	evidence	delivered	for	the	TOE	and	
TSF,	determining	that	the	properties	are	achieved.	

Specification	 of	 security	 functionality	 implementing	 the	 SFRs	 (in	 the	 Functional	 specification	
(ADV_FSP)	 and	 TOE	 design	 (ADV_TDS))	 will	 not	 necessarily	 describe	 mechanisms	 employed	 in	
implementing	 self-protection	 and	 non-bypassability	 (e.g.	 memory	 management	 mechanisms).	
Therefore,	the	material	needed	to	provide	the	assurance	that	these	requirements	are	being	achieved	is	
better	 suited	 to	 a	 presentation	 separate	 from	 the	 design	 decomposition	 of	 the	 TSF	 as	 embodied	 in	
ADV_FSP	and	ADV_TDS.	This	is	not	to	imply	that	the	security	architecture	description	called	for	by	this	
component	 cannot	 reference	or	make	use	of	 the	design	decomposition	material;	 but	 it	 is	 likely	 that	
much	of	the	detail	present	in	the	decomposition	documentation	will	not	be	relevant	to	the	argument	
being	provided	for	the	security	architecture	description	document.	

The	description	of	architectural	soundness	can	be	thought	of	as	a	developer's	vulnerability	analysis,	in	
that	 it	 provides	 the	 justification	 for	 why	 the	 TSF	 is	 sound	 and	 enforces	 all	 of	 its	 SFRs.	Where	 the	
soundness	is	achieved	through	specific	security	mechanisms,	these	will	be	tested	as	part	of	the	Depth	
(ATE_DPT)	 requirements;	 where	 the	 soundness	 is	 achieved	 solely	 through	 the	 architecture,	 the	
behaviour	will	be	tested	as	part	of	the	AVA:	Vulnerability	assessment	requirements.	

This	 family	 consists	 of	 requirements	 for	 a	 security	 architecture	 description	 that	 describes	 the	 self-
protection,	 domain	 separation,	 non-bypassability	 principles,	 including	 a	 description	 of	 how	 these	
principles	are	supported	by	the	parts	of	the	TOE	that	are	used	for	TSF	initialisation.	

In	 case	 of	 a	multi-assurance	 evaluation	 the	 properties	 of	 self-protection,	 domain	 separation,	 and	
non-bypassability	may	also	be	described	for	boundaries	between	the	sub-TSF.	

Additional	 information	on	the	security	architecture	properties	of	self-protection,	domain	separation,	
and	 non-bypassability	 can	 be	 found	 in	 Annex	A.1,	 ADV_ARC:	 Supplementary	 material	 on	 security	
architectures.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 51	
	

	

10.2.4 ADV_ARC.1	Security	architecture	description	

Dependencies:	 ADV_FSP.1	Basic	functional	specification	

	 ADV_TDS.1	Basic	design	
Developer	action	elements	

ADV_ARC.1.1D	

The	 developer	 shall	 design	 and	 implement	 the	 TOE	 so	 that	 the	 security	 features	 of	 the	 TSF	
cannot	be	bypassed.	

ADV_ARC.1.2D	

The	 developer	 shall	 design	 and	 implement	 the	 TSF	 so	 that	 it	 is	 able	 to	 protect	 itself	 from	
tampering	by	untrusted	active	entities.	

ADV_ARC.1.3D	

The	developer	shall	provide	a	security	architecture	description	of	the	TSF.	

Content	and	presentation	elements	

ADV_ARC.1.1C	

The	 security	 architecture	 description	 shall	 be	 at	 a	 level	 of	 detail	 commensurate	 with	 the	
description	of	the	SFR-enforcing	abstractions	described	in	the	TOE	design	document.	

ADV_ARC.1.2C	

The	 security	 architecture	 description	 shall	 describe	 the	 security	 domains	maintained	 by	 the	
TSF	consistently	with	the	SFRs.	

ADV_ARC.1.3C	

The	 security	 architecture	 description	 shall	 describe	 how	 the	 TSF	 initialisation	 process	 is	
secure.	

ADV_ARC.1.4C	

The	 security	 architecture	 description	 shall	 demonstrate	 that	 the	 TSF	 protects	 itself	 from	
tampering.	

ADV_ARC.1.5C	

The	 security	 architecture	 description	 shall	 demonstrate	 that	 the	 TSF	 prevents	 bypass	 of	 the	
SFR-enforcing	functionality.	

Evaluator	action	elements	

ADV_ARC.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
10.3 Functional	specification	(ADV_FSP)	

10.3.1 Objectives	

This	family	levies	requirements	upon	the	functional	specification,	which	describes	the	TSF	interfaces	
(TSFIs).	The	TSFI	consists	of	all	means	by	which	external	entities	(or	subjects	in	the	TOE	but	outside	of	
the	TSF)	supply	data	to	the	TSF,	receive	data	from	the	TSF	and	invoke	services	from	the	TSF.	It	does	
not	describe	how	the	TSF	processes	 those	service	requests,	nor	does	 it	describe	 the	 communication	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 52	
	

	

when	the	TSF	invokes	services	from	its	operational	environment;	this	information	is	addressed	by	the	
TOE	design	(ADV_TDS)	and	Reliance	of	dependent	component	(ACO_REL)	families,	respectively.	

This	 family	provides	assurance	directly	by	allowing	the	evaluator	 to	understand	how	the	TSF	meets	
the	 claimed	 SFRs.	 It	 also	 provides	 assurance	 indirectly,	 as	 input	 to	 other	 assurance	 families	 and	
classes:	

—	 ADV_ARC,	where	the	description	of	the	TSFIs	may	be	used	to	gain	better	understanding	of	how	the	
TSF	 is	 protected	 against	 corruption	 (i.e.	 subversion	 of	 self-protection	 or	 domain	 separation)	
and/or	bypass;	

—	 ATE,	where	 the	description	of	 the	TSFIs	 is	an	 important	 input	 for	both	developer	and	evaluator	
testing;	

—	 AVA,	where	the	description	of	the	TSFIs	is	used	to	search	for	vulnerabilities.	

10.3.2 Component	levelling	

The	components	 in	this	 family	are	 levelled	on	the	degree	of	detail	required	of	 the	description	of	 the	
TSFIs,	and	the	degree	of	formalism	required	of	the	description	of	the	TSFIs.	
10.3.3 Application	notes	

Once	 the	TSFIs	are	determined	(see	A.2.2	 for	guidance	and	examples	of	determining	TSFI),	 they	are	
described.	 At	 lower-level	 components,	 developers	 focus	 their	 documentation	 (and	 evaluators	 focus	
their	analysis)	on	the	more	security-relevant	aspects	of	the	TOE.	Three	categories	of	TSFIs	are	defined,	
based	upon	the	relevance	the	services	available	through	them	have	to	the	SFRs	being	claimed:	

—	 If	a	service	available	through	an	interface	can	be	traced	to	one	of	the	SFRs	levied	on	the	TSF,	then	
that	interface	is	termed	SFR-enforcing.	Note	that	it	is	possible	that	an	interface	may	have	various	
services	and	results,	some	of	which	may	be	SFR-enforcing	and	some	of	which	may	not.	

—	 Interfaces	 to	 (or	 services	 available	 through	an	 interface	 relating	 to)	 services	 that	 SFR-enforcing	
functionality	depends	upon,	but	need	only	to	function	correctly	in	order	for	the	security	policies	of	
the	TOE	to	be	preserved,	are	termed	SFR-supporting.	

—	 Interfaces	 to	 services	 on	which	 SFR-enforcing	 functionality	 has	 no	 dependence	 are	 termed	SFR	
non-interfering.	

It	should	be	noted	that	in	order	for	an	interface	to	be	SFR-supporting	or	SFR	non-interfering	it	must	
have	 no	 SFR-enforcing	 services	 or	 results.	 In	 contrast,	 an	 SFR-enforcing	 interface	 may	 have	 SFR-
supporting	services	(for	example,	the	ability	to	set	the	system	clock	may	be	an	SFR-enforcing	service	of	
an	interface,	but	if	that	same	interface	is	used	to	display	the	system	date	that	service	may	be	only	SFR-
supporting).	An	example	of	 a	purely	 SFR-supporting	 interface	 is	 a	 system	call	 interface	 that	 is	used	
both	by	users	and	by	a	portion	of	the	TSF	that	is	running	on	behalf	of	users.	

As	more	information	about	the	TSFIs	becomes	available,	the	greater	the	assurance	that	can	be	gained	
that	the	interfaces	are	correctly	categorised/analysed.	The	requirements	are	structured	such	that,	at	
the	lowest	level,	the	information	required	for	SFR	non-interfering	interfaces	is	the	minimum	necessary	
in	order	 for	 the	evaluator	 to	make	this	determination	 in	an	effective	manner.	At	higher	 levels,	more	
information	becomes	available	so	that	the	evaluator	has	greater	confidence	in	the	designation.	

The	purpose	in	defining	these	labels	(SFR-enforcing,	SFR-supporting,	and	SFR-non-interfering)	and	for	
levying	different	 requirements	upon	each	 (at	 the	 lower	assurance	 components)	 is	 to	provide	a	 first	
approximation	of	where	to	focus	the	analysis	and	the	evidence	upon	which	that	analysis	is	performed.	
If	 the	 developer's	 documentation	 of	 the	 TSF	 interfaces	 describes	 all	 of	 the	 interfaces	 to	 the	 degree	
specified	 in	 the	requirements	 for	 the	SFR-enforcing	 interfaces	(that	 is,	 if	 the	documentation	exceeds	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 53	
	

	

the	 requirements),	 there	 is	 no	 need	 for	 the	 developer	 to	 create	 new	 evidence	 to	 match	 the	
requirements.	Similarly,	because	 the	 labels	are	merely	a	means	of	differentiating	 the	 interface	 types	
within	the	requirements,	there	is	no	need	for	the	developer	to	update	the	evidence	solely	to	label	the	
interfaces	 as	 SFR-enforcing,	 SFR-supporting,	 and	 SFR-non-interfering.	 The	 primary	 purpose	 of	 this	
labelling	 is	 to	 allow	 developers	 with	 less	 mature	 development	 methodologies	 (and	 associated	
artefacts,	such	as	detailed	interface	and	design	documentation)	to	provide	only	the	necessary	evidence	
without	undue	cost.	

The	 last	C	element	of	each	component	within	 this	 family	provides	a	direct	correspondence	between	
the	SFRs	and	the	functional	specification;	that	is,	an	indication	of	which	interfaces	are	used	to	invoke	
each	of	the	claimed	SFRs.	In	the	cases	where	the	ST	contains	such	functional	requirements	as	15408-2,	
whose	functionality	may	not	manifest	itself	at	the	TSFIs,	the	functional	specification	and/or	the	tracing	
is	expected	to	identify	these	SFRs;	including	them	in	the	functional	specification	helps	to	ensure	that	
they	are	not	lost	at	lower	levels	of	decomposition,	where	they	will	be	relevant.	

Detail	about	the	Interfaces	

The	 requirements	 define	 collections	 of	 details	 about	 TSFI	 to	 be	 provided.	 For	 the	 purposes	 of	 the	
requirements,	interfaces	are	specified	(in	varying	degrees	of	detail)	in	terms	of	their	purpose,	method	
of	use,	parameters,	parameter	descriptions,	and	error	messages.	

The	purpose	of	an	interface	is	a	high-level	description	of	the	general	goal	of	the	interface	(e.g.	process	
GUI	commands,	receive	network	packets,	provide	printer	output,	etc.).	

The	 interface's	method	 of	 use	 describes	 how	 the	 interface	 is	 supposed	 to	 be	 used.	 This	 description	
should	be	built	around	the	various	interactions	available	at	that	interface.	For	instance,	if	the	interface	
were	a	Unix	command	shell,	ls,	mv	and	cp	would	be	interactions	for	that	interface.	For	each	interaction	
the	method	of	use	describes	what	the	interaction	does,	both	for	behaviour	seen	at	the	interface	(e.g.	
the	programmer	calling	the	API,	the	Windows	users	changing	a	setting	in	the	registry,	etc.)	as	well	as	
behaviour	at	other	interfaces	(e.g.	generating	an	audit	record).	

Parameters	 are	 explicit	 inputs	 to	 and	 outputs	 from	 an	 interface	 that	 control	 the	 behaviour	 of	 that	
interface.	For	example,	parameters	are	the	arguments	supplied	to	an	API;	the	various	fields	in	a	packet	
for	a	given	network	protocol;	the	individual	key	values	in	the	Windows	Registry;	the	signals	across	a	
set	of	pins	on	a	 chip;	 the	 flags	 that	 can	be	 set	 for	 the	 ls,	 etc.	The	parameters	are	 “identified”	with	a	
simple	list	of	what	they	are.	

A	 parameter	 description	 tells	 what	 the	 parameter	 is	 in	 some	 meaningful	 way.	 For	 instance,	 an	
acceptable	parameter	description	for	interface	foo(i)	would	be	“parameter	i	is	an	integer	that	indicates	
the	 number	 of	 users	 currently	 logged	 in	 to	 the	 system”.	 A	 description	 such	 as	 “parameter	 i	 is	 an	
integer”	is	not	an	acceptable.	

The	description	of	an	interface's	actions	describes	what	the	interface	does.	This	is	more	detailed	than	
the	purpose	 in	 that,	while	 the	“purpose”	reveals	why	one	might	want	 to	use	 it,	 the	“actions”	reveals	
everything	 that	 it	 does.	 These	 actions	 might	 be	 related	 to	 the	 SFRs	 or	 not.	 In	 cases	 where	 the	
interface's	 action	 is	 not	 related	 to	 SFRs,	 its	 description	 is	 said	 to	 be	 summarized,	 meaning	 the	
description	merely	makes	clear	that	it	is	indeed	not	SFR-related.	

The	error	message	description	 identifies	the	condition	that	generated	it,	what	the	message	is,	and	the	
meaning	of	 any	error	 codes.	An	error	message	 is	 generated	by	 the	TSF	 to	 signify	 that	 a	problem	or	
irregularity	of	some	degree	has	been	encountered.	The	requirements	 in	this	 family	refer	to	different	
kinds	of	error	messages:	

—	 a	“direct”	error	message	is	a	security-relevant	response	through	a	specific	TSFI	invocation.	

—	 an	“indirect”	error	cannot	be	tied	to	a	specific	TSFI	invocation	because	it	results	from	system-wide	
conditions	(e.g.	resource	exhaustion,	connectivity	interruptions,	etc.).	Error	messages	that	are	not	
security-relevant	are	also	considered	“indirect”.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 54	
	

	

—	 “remaining”	errors	are	any	other	errors,	such	as	those	that	might	be	referenced	within	the	code.	
For	example,	the	use	of	condition-checking	code	that	checks	for	conditions	that	would	not	logically	
occur	(e.g.	a	final	“else”	after	a	list	of	“case”	statements),	would	provide	for	generating	a	catch-all	
error	message;	in	an	operational	TOE,	these	error	messages	should	never	be	seen.	

An	example	functional	specification	is	provided	in	A.2.4.	

Components	of	this	Family	

Increasing	 assurance	 through	 increased	 completeness	 and	 accuracy	 in	 the	 interface	 specification	 is	
reflected	 in	 the	 documentation	 required	 from	 the	 developer	 as	 detailed	 in	 the	 various	 hierarchical	
components	of	this	family.	

At	ADV_FSP.1	Basic	functional	specification,	the	only	documentation	required	is	a	characterization	of	
all	 TSFIs	 and	 a	 high	 level	 description	 of	 SFR-enforcing	 and	 SFR-supporting	TSFIs.	 To	 provide	 some	
assurance	that	the	“important”	aspects	of	the	TSF	have	been	correctly	characterized	at	the	TSFIs,	the	
developer	is	required	to	provide	the	purpose	and	method	of	use,	parameters	for	the	SFR-enforcing	and	
SFR-supporting	TSFIs.	

At	 ADV_FSP.2	 Security-enforcing	 functional	 specification,	 the	 developer	 is	 required	 to	 provide	 the	
purpose,	method	 of	 use,	 parameters,	 and	 parameter	 descriptions	 for	 all	 TSFIs.	 Additionally,	 for	 the	
SFR-enforcing	 TSFIs	 the	 developer	 has	 to	 describe	 the	 SFR-enforcing	 actions	 and	 direct	 error	
messages.	

At	ADV_FSP.3	Functional	specification	with	complete	summary,	the	developer	must	now,	in	addition	to	
the	 information	 required	 at	 ADV_FSP.2,	 provide	 enough	 information	 about	 the	 SFR-supporting	 and	
SFR-non-interfering	actions	to	show	that	they	are	not	SFR-enforcing.	Further,	the	developer	must	now	
document	all	of	the	direct	error	messages	resulting	from	the	invocation	of	SFR-enforcing	TSFIs.	

At	ADV_FSP.4	Complete	functional	specification,	all	TSFIs	-	whether	SFR-enforcing,	SFR-supporting	or	
SFR-non-interfering	-	must	be	described	to	the	same	degree,	including	all	of	the	direct	error	messages.	

At	 ADV_FSP.5	 Complete	 semi-formal	 functional	 specification	 with	 additional	 error	 information,	 the	
TSFIs	descriptions	also	include	error	messages	that	do	not	result	from	an	invocation	of	a	TSFI.	

At	 ADV_FSP.6	 Complete	 semi-formal	 functional	 specification	with	 additional	 formal	 specification,	 in	
addition	 to	 the	 information	 required	by	ADV_FSP.5,	 all	 remaining	 error	messages	 are	 included.	The	
developer	must	also	provide	a	formal	description	of	the	TSFI.	This	provides	an	alternative	view	of	the	
TSFI	that	may	expose	inconsistencies	or	incomplete	specification.	
10.3.4 ADV_FSP.1	Basic	functional	specification	

Dependencies:	No	dependencies.	

Developer	action	elements	

ADV_FSP.1.1D	

The	developer	shall	provide	a	functional	specification.	

ADV_FSP.1.2D	

The	developer	shall	provide	a	tracing	from	the	functional	specification	to	the	SFRs.	

Content	and	presentation	elements	

ADV_FSP.1.1C	

The	 functional	 specification	 shall	 describe	 the	 purpose	 and	 method	 of	 use	 for	 each	 SFR-
enforcing	and	SFR-supporting	TSFI.	

ADV_FSP.1.2C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 55	
	

	

The	 functional	 specification	 shall	 identify	 all	 parameters	 associated	with	 each	 SFR-enforcing	
and	SFR-supporting	TSFI.	

ADV_FSP.1.3C	

The	functional	specification	shall	provide	rationale	for	the	implicit	categorization	of	interfaces	
as	SFR-non-interfering.	

ADV_FSP.1.4C	

The	tracing	shall	demonstrate	that	the	SFRs	trace	to	TSFIs	in	the	functional	specification.	

Evaluator	action	elements	

ADV_FSP.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ADV_FSP.1.2E	

The	 evaluator	 shall	 determine	 that	 the	 functional	 specification	 is	 an	 accurate	 and	 complete	
instantiation	of	the	SFRs.	
10.3.5 ADV_FSP.2	Security-enforcing	functional	specification	

Dependencies:	ADV_TDS.1	Basic	design	

Developer	action	elements	

ADV_FSP.2.1D	

The	developer	shall	provide	a	functional	specification.	

ADV_FSP.2.2D	

The	developer	shall	provide	a	tracing	from	the	functional	specification	to	the	SFRs.	

Content	and	presentation	elements	

ADV_FSP.2.1C	

The	functional	specification	shall	completely	represent	the	TSF.	

ADV_FSP.2.2C	

The	functional	specification	shall	describe	the	purpose	and	method	of	use	for	all	TSFI.	

ADV_FSP.2.3C	

The	functional	specification	shall	identify	and	describe	all	parameters	associated	with	each	TSFI.	

ADV_FSP.2.4C	

For	each	SFR-enforcing	TSFI,	the	functional	specification	shall	describe	the	SFR-enforcing	actions	
associated	with	the	TSFI.	

ADV_FSP.2.5C	

For	each	SFR-enforcing	TSFI,	 the	functional	specification	shall	describe	direct	error	messages	
resulting	from	processing	associated	with	the	SFR-enforcing	actions.	

ADV_FSP.2.6C	

The	tracing	shall	demonstrate	that	the	SFRs	trace	to	TSFIs	in	the	functional	specification.	

Evaluator	action	elements	

ADV_FSP.2.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 56	
	

	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_FSP.2.2E	

The	 evaluator	 shall	 determine	 that	 the	 functional	 specification	 is	 an	 accurate	 and	 complete	
instantiation	of	the	SFRs.	
10.3.6 ADV_FSP.3	Functional	specification	with	complete	summary	

Dependencies:	ADV_TDS.1	Basic	design	

Developer	action	elements	

ADV_FSP.3.1D	

The	developer	shall	provide	a	functional	specification.	

ADV_FSP.3.2D	

The	developer	shall	provide	a	tracing	from	the	functional	specification	to	the	SFRs.	

Content	and	presentation	elements	

ADV_FSP.3.1C	

The	functional	specification	shall	completely	represent	the	TSF.	

ADV_FSP.3.2C	

The	functional	specification	shall	describe	the	purpose	and	method	of	use	for	all	TSFI.	

ADV_FSP.3.3C	

The	functional	specification	shall	identify	and	describe	all	parameters	associated	with	each	TSFI.	

ADV_FSP.3.4C	

For	 each	 SFR-enforcing	 TSFI,	 the	 functional	 specification	 shall	 describe	 the	 SFR-enforcing	 actions	
associated	with	the	TSFI.	

ADV_FSP.3.5C	

For	each	SFR-enforcing	TSFI,	the	functional	specification	shall	describe	direct	error	messages	resulting	
from	SFR-enforcing	actions	and	exceptions	associated	with	invocation	of	the	TSFI.	

ADV_FSP.3.6C	

The	 functional	 specification	 shall	 summarize	 the	 SFR-supporting	 ands	 SFR-non-interfering	
actions	associated	with	each	TSFI.	

ADV_FSP.3.7C	

The	tracing	shall	demonstrate	that	the	SFRs	trace	to	TSFIs	in	the	functional	specification.	

Evaluator	action	elements	

ADV_FSP.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_FSP.3.2E	

The	 evaluator	 shall	 determine	 that	 the	 functional	 specification	 is	 an	 accurate	 and	 complete	
instantiation	of	the	SFRs.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 57	
	

	

10.3.7 ADV_FSP.4	Complete	functional	specification	

Dependencies:	ADV_TDS.1	Basic	design	

Developer	action	elements	

ADV_FSP.4.1D	

The	developer	shall	provide	a	functional	specification.	

ADV_FSP.4.2D	

The	developer	shall	provide	a	tracing	from	the	functional	specification	to	the	SFRs.	

Content	and	presentation	elements	

ADV_FSP.4.1C	

The	functional	specification	shall	completely	represent	the	TSF.	

ADV_FSP.4.2C	

The	functional	specification	shall	describe	the	purpose	and	method	of	use	for	all	TSFI.	

ADV_FSP.4.3C	

The	functional	specification	shall	identify	and	describe	all	parameters	associated	with	each	TSFI.	

ADV_FSP.4.4C	

The	functional	specification	shall	describe	all	actions	associated	with	each	TSFI.	

ADV_FSP.4.5C	

The	 functional	 specification	 shall	 describe	 all	 direct	 error	messages	 that	may	 result	 from	an	
invocation	of	each	TSFI.	

ADV_FSP.4.6C	

The	tracing	shall	demonstrate	that	the	SFRs	trace	to	TSFIs	in	the	functional	specification.	

Evaluator	action	elements	

ADV_FSP.4.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_FSP.4.2E	

The	 evaluator	 shall	 determine	 that	 the	 functional	 specification	 is	 an	 accurate	 and	 complete	
instantiation	of	the	SFRs.	
10.3.8 ADV_FSP.5	Complete	semi-formal	functional	specification	with	additional	error	
information	

Dependencies:	 ADV_TDS.1	Basic	design	

	 ADV_IMP.1	Implementation	representation	of	the	TSF	
Developer	action	elements	

ADV_FSP.5.1D	

The	developer	shall	provide	a	functional	specification.	

ADV_FSP.5.2D	

The	developer	shall	provide	a	tracing	from	the	functional	specification	to	the	SFRs.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 58	
	

	

Content	and	presentation	elements	

ADV_FSP.5.1C	

The	functional	specification	shall	completely	represent	the	TSF.	

ADV_FSP.5.2C	

The	functional	specification	shall	describe	the	TSFI	using	a	semi-formal	style.	

ADV_FSP.5.3C	

The	functional	specification	shall	describe	the	purpose	and	method	of	use	for	all	TSFI.	

ADV_FSP.5.4C	

The	functional	specification	shall	identify	and	describe	all	parameters	associated	with	each	TSFI.	

ADV_FSP.5.5C	

The	functional	specification	shall	describe	all	actions	associated	with	each	TSFI.	

ADV_FSP.5.6C	

The	functional	specification	shall	describe	all	direct	error	messages	that	may	result	from	an	invocation	
of	each	TSFI.	

ADV_FSP.5.7C	

The	 functional	 specification	 shall	 describe	 all	 error	 messages	 that	 do	 not	 result	 from	 an	
invocation	of	a	TSFI.	

ADV_FSP.5.8C	

The	functional	specification	shall	provide	a	rationale	for	each	error	message	contained	in	the	
TSF	implementation	yet	does	not	result	from	an	invocation	of	a	TSFI.	

ADV_FSP.5.9C	

The	tracing	shall	demonstrate	that	the	SFRs	trace	to	TSFIs	in	the	functional	specification.	

Evaluator	action	elements	

ADV_FSP.5.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_FSP.5.2E	

The	 evaluator	 shall	 determine	 that	 the	 functional	 specification	 is	 an	 accurate	 and	 complete	
instantiation	of	the	SFRs.	
10.3.9 ADV_FSP.6	Complete	semi-formal	functional	specification	with	additional	formal	
specification	

Dependencies:	 ADV_TDS.1	Basic	design	

	 ADV_IMP.1	Implementation	representation	of	the	TSF	
Developer	action	elements	

ADV_FSP.6.1D	

The	developer	shall	provide	a	functional	specification.	

ADV_FSP.6.2D	

The	developer	shall	provide	a	formal	presentation	of	the	functional	specification	of	the	TSF.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 59	
	

	

ADV_FSP.6.3D	

The	developer	shall	provide	a	tracing	from	the	functional	specification	to	the	SFRs.	

Content	and	presentation	elements	

ADV_FSP.6.1C	

The	functional	specification	shall	completely	represent	the	TSF.	

ADV_FSP.6.2C	

The	functional	specification	shall	describe	the	TSFI	using	a	formal	style.	

ADV_FSP.6.3C	

The	functional	specification	shall	describe	the	purpose	and	method	of	use	for	all	TSFI.	

ADV_FSP.6.4C	

The	functional	specification	shall	identify	and	describe	all	parameters	associated	with	each	TSFI.	

ADV_FSP.6.5C	

The	functional	specification	shall	describe	all	actions	associated	with	each	TSFI.	

ADV_FSP.6.6C	

The	functional	specification	shall	describe	all	direct	error	messages	that	may	result	from	an	invocation	
of	each	TSFI.	

ADV_FSP.6.7C	

The	functional	specification	shall	describe	all	error	messages	contained	in	the	TSF	implementation	
representation.	

ADV_FSP.6.8C	

The	 functional	 specification	 shall	 provide	 a	 rationale	 for	 each	 error	 message	 contained	 in	 the	 TSF	
implementation	that	is	not	otherwise	described	in	the	functional	specification	justifying	why	it	is	
not	associated	with	a	TSFI.	

ADV_FSP.6.9C	

The	formal	presentation	of	the	functional	specification	of	the	TSF	shall	describe	the	TSFI	using	
a	formal	style,	supported	by	informal,	explanatory	text	where	appropriate.	

ADV_FSP.6.10C	

The	tracing	shall	demonstrate	that	the	SFRs	trace	to	TSFIs	in	the	functional	specification.	

Evaluator	action	elements	

ADV_FSP.6.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_FSP.6.2E	

The	 evaluator	 shall	 determine	 that	 the	 functional	 specification	 is	 an	 accurate	 and	 complete	
instantiation	of	the	SFRs.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 60	
	

	

10.4 Implementation	representation	(ADV_IMP)	

10.4.1 Objectives	

The	 function	 of	 the	 Implementation	 representation	 (ADV_IMP)	 family	 is	 for	 the	 developer	 to	make	
available	 the	 implementation	representation	 (and,	at	higher	 levels,	 the	 implementation	 itself)	of	 the	
TOE	 in	a	 form	 that	 can	be	analysed	by	 the	evaluator.	The	 implementation	 representation	 is	used	 in	
analysis	activities	for	other	families	(analysing	the	TOE	design,	for	instance)	to	demonstrate	that	the	
TOE	conforms	its	design	and	to	provide	a	basis	for	analysis	 in	other	areas	of	the	evaluation	(e.g.	 the	
search	 for	 vulnerabilities).	 The	 implementation	 representation	 is	 expected	 to	 be	 in	 a	 form	 that	
captures	the	detailed	internal	workings	of	the	TSF.	This	may	be	software	source	code,	firmware	source	
code,	hardware	diagrams	and/or	IC	hardware	design	language	code	or	layout	data.	
10.4.2 Component	levelling	

The	components	 in	 this	 family	are	 levelled	on	 the	amount	of	 implementation	 that	 is	mapped	 to	 the	
TOE	design	description.	
10.4.3 Application	notes	

Source	code	or	hardware	diagrams	and/or	IC	hardware	design	language	code	or	layout	data	that	are	
used	 to	 build	 the	 actual	 hardware	 are	 examples	 of	 parts	 of	 an	 implementation	 representation.	 It	 is	
important	 to	 note	 that	 while	 the	 implementation	 representation	 must	 be	 made	 available	 to	 the	
evaluator,	 this	does	not	 imply	 that	 the	evaluator	needs	 to	possess	 that	 representation.	For	 instance,	
the	developer	may	require	that	the	evaluator	review	the	implementation	representation	at	a	site	of	the	
developer's	choosing.	

The	entire	implementation	representation	is	made	available	to	ensure	that	analysis	activities	are	not	
curtailed	 due	 to	 lack	 of	 information.	 This	 does	 not,	 however,	 imply	 that	 all	 of	 the	 representation	 is	
examined	 when	 the	 analysis	 activities	 are	 being	 performed.	 This	 is	 likely	 impractical	 in	 almost	 all	
cases,	 in	addition	to	the	fact	that	it	most	likely	will	not	result	in	a	higher-assurance	TOE	vs.	targeted	
sampling	of	the	implementation	representation.	The	implementation	representation	is	made	available	
to	allow	analysis	of	other	TOE	design	decompositions	(e.g.	functional	specification,	TOE	design),	and	to	
gain	confidence	that	the	security	functionality	described	at	a	higher	level	in	the	design	actually	appear	
to	be	implemented	in	the	TOE.	Conventions	in	some	forms	of	the	implementation	representation	may	
make	 it	difficult	or	 impossible	to	determine	from	just	 the	 implementation	representation	 itself	what	
the	actual	result	of	the	compilation	or	run-time	interpretation	will	be.	For	example,	compiler	directives	
for	C	language	compilers	will	cause	the	compiler	to	exclude	or	include	entire	portions	of	the	code.	For	
this	reason,	 it	 is	 important	that	such	“extra”	 information	or	related	tools	(scripts,	compilers,	etc.)	be	
provided	so	that	the	implementation	representation	can	be	accurately	determined.	

The	 purpose	 of	 the	 mapping	 between	 the	 implementation	 representation	 and	 the	 TOE	 design	
description	 is	 to	 aid	 the	 evaluator's	 analysis.	 The	 internal	 workings	 of	 the	 TOE	 may	 be	 better	
understood	 when	 the	 TOE	 design	 is	 analysed	 with	 corresponding	 portions	 of	 the	 implementation	
representation.	The	mapping	serves	as	an	index	into	the	implementation	representation.	At	the	lower	
component,	 only	 a	 subset	 of	 the	 implementation	 representation	 is	 mapped	 to	 the	 TOE	 design	
description.	Because	of	 the	uncertainty	of	which	portions	of	 the	 implementation	representation	will	
need	 such	 a	 mapping,	 the	 developer	 may	 choose	 either	 to	 map	 the	 entire	 implementation	
representation	beforehand,	or	to	wait	to	see	which	portions	of	the	implementation	representation	the	
evaluator	requires	to	be	mapped.	

The	 implementation	 representation	 is	 manipulated	 by	 the	 developer	 in	 a	 form	 that	 is	 suitable	 for	
transformation	 to	 the	 actual	 implementation.	 For	 instance,	 the	 developer	 may	 work	 with	 files	
containing	source	code,	which	is	eventually	compiled	to	become	part	of	the	TSF.	The	developer	makes	
available	the	implementation	representation	in	the	form	used	by	the	developer,	so	that	the	evaluator	
may	 use	 automated	 techniques	 in	 the	 analysis.	 This	 also	 increases	 the	 confidence	 that	 the	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 61	
	

	

implementation	 representation	 examined	 is	 actually	 the	 one	 used	 in	 the	 production	 of	 the	 TSF	 (as	
opposed	to	the	case	where	it	is	supplied	in	an	alternate	presentation	format,	such	as	a	word	processor	
document).	 It	 should	 be	 noted	 that	 other	 forms	 of	 the	 implementation	 representation	may	 also	 be	
used	by	 the	developer;	 these	 forms	are	supplied	as	well.	The	overall	goal	 is	 to	 supply	 the	evaluator	
with	the	information	that	will	maximize	the	effectiveness	of	the	evaluator's	analysis	efforts.	

Some	 forms	of	 the	 implementation	 representation	may	 require	additional	 information	because	 they	
introduce	 significant	 barriers	 to	 understanding	 and	 analysis.	 Examples	 include	 “shrouded”	 source	
code	 or	 source	 code	 that	 has	 been	 obfuscated	 in	 other	 ways	 such	 that	 it	 prevents	 understanding	
and/or	 analysis.	 These	 forms	 of	 implementation	 representation	 typically	 result	 from	 the	 TOE	
developer	 taking	 a	 version	 of	 the	 implementation	 representation	 and	 running	 a	 shrouding	 or	
obfuscation	program	on	it.	While	the	shrouded	representation	is	what	is	compiled	and	may	be	closer	
to	the	implementation	(in	terms	of	structure)	than	the	original,	un-shrouded	representation,	supplying	
such	 obfuscated	 code	may	 cause	 significantly	more	 time	 to	 be	 spent	 in	 analysis	 tasks	 involving	 the	
representation.	When	such	forms	of	representation	are	created,	the	components	require	details	on	the	
shrouding	 tools/algorithms	 used	 so	 that	 the	 un-shrouded	 representation	 can	 be	 supplied,	 and	 the	
additional	 information	 can	 be	 used	 to	 gain	 confidence	 that	 the	 shrouding	 process	 does	 not	
compromise	any	security	functionality.	
10.4.4 ADV_IMP.1	Implementation	representation	of	the	TSF	

Dependencies:	 ADV_TDS.3	Basic	modular	design	

	 ALC_TAT.1	Well-defined	development	tools	
Developer	action	elements	

ADV_IMP.1.1D	

The	developer	shall	make	available	the	implementation	representation	for	the	entire	TSF.	

ADV_IMP.1.2D	

The	developer	shall	provide	a	mapping	between	the	TOE	design	description	and	the	sample	of	
the	implementation	representation.	

Content	and	presentation	elements	

ADV_IMP.1.1C	

The	 implementation	representation	shall	define	 the	TSF	to	a	 level	of	detail	such	that	 the	TSF	
may	be	generated	without	further	design	decisions.	

ADV_IMP.1.2C	

The	implementation	representation	shall	be	in	the	form	used	by	the	development	personnel.	

ADV_IMP.1.3C	

The	 mapping	 between	 the	 TOE	 design	 description	 and	 the	 sample	 of	 the	 implementation	
representation	shall	demonstrate	their	correspondence.	

Evaluator	action	elements	

ADV_IMP.1.1E	

The	evaluator	shall	confirm	that,	for	the	selected	sample	of	the	implementation	representation,	
the	information	provided	meets	all	requirements	for	content	and	presentation	of	evidence.	
10.4.5 ADV_IMP.2	Complete	mapping	of	the	implementation	representation	of	the	TSF	

Dependencies:	 ADV_TDS.3	Basic	modular	design	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 62	
	

	

	 ALC_TAT.1	Well-defined	development	tools	

	 ALC_CMC.5	Advanced	support	
Developer	action	elements	

ADV_IMP.2.1D	

The	developer	shall	make	available	the	implementation	representation	for	the	entire	TSF.	

ADV_IMP.2.2D	

The	 developer	 shall	 provide	 a	 mapping	 between	 the	 TOE	 design	 description	 and	 the	 entire	
implementation	representation.	

Content	and	presentation	elements	

ADV_IMP.2.1C	

The	implementation	representation	shall	define	the	TSF	to	a	level	of	detail	such	that	the	TSF	may	be	
generated	without	further	design	decisions.	

ADV_IMP.2.2C	

The	implementation	representation	shall	be	in	the	form	used	by	the	development	personnel.	

ADV_IMP.2.3C	

The	mapping	between	the	TOE	design	description	and	the	entire	implementation	representation	shall	
demonstrate	their	correspondence.	

Evaluator	action	elements	

ADV_IMP.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

10.5 TSF	internals	(ADV_INT)	

10.5.1 Objectives	

This	family	addresses	the	assessment	of	the	internal	structure	of	the	TSF.	A	TSF	whose	internals	are	
well-structured	 is	 easier	 to	 implement	 and	 less	 likely	 to	 contain	 flaws	 that	 could	 lead	 to	
vulnerabilities;	it	is	also	easier	to	maintain	without	the	introduction	of	flaws.	
10.5.2 Component	levelling	

The	components	in	this	family	are	levelled	on	the	basis	of	the	amount	of	structure	and	minimization	of	
complexity	required.	ADV_INT.1	Well-structured	subset	of	TSF	internals	places	requirements	for	well-
structured	 internals	 on	 only	 selected	 parts	 of	 the	 TSF.	 This	 component	 is	 not	 included	 in	 an	 EAL	
because	 this	 component	 is	 viewed	 for	 use	 in	 special	 circumstances	 (e.g.	 the	 sponsor	 has	 a	 specific	
concern	regarding	a	cryptographic	module,	which	is	isolated	from	the	rest	of	the	TSF)	and	would	not	
be	widely	applicable.	

At	the	next	level,	the	requirements	for	well-structured	internals	are	placed	on	the	entire	TSF.	Finally,	
minimization	of	complexity	is	introduced	in	the	highest	component.	
10.5.3 Application	notes	

These	 requirements,	 when	 applied	 to	 the	 internal	 structure	 of	 the	 TSF,	 typically	 result	 in	
improvements	 that	 aid	 both	 the	 developer	 and	 the	 evaluator	 in	 understanding	 the	 TSF,	 and	 also	
provide	the	basis	for	designing	and	evaluating	test	suites.	Further,	improving	understandability	of	the	
TSF	should	assist	the	developer	in	simplifying	its	maintainability.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 63	
	

	

The	 requirements	 in	 this	 family	 are	 presented	 at	 a	 fairly	 abstract	 level.	 The	 wide	 variety	 of	 TOEs	
makes	it	impossible	to	codify	anything	more	specific	than	“well-structured”	or	“minimum	complexity”.	
Judgements	 on	 structure	 and	 complexity	 are	 expected	 to	 be	 derived	 from	 the	 specific	 technologies	
used	 in	 the	 TOE.	 For	 example,	 software	 is	 likely	 to	 be	 considered	well-structured	 if	 it	 exhibits	 the	
characteristics	cited	in	the	software	engineering	disciplines.	The	components	within	this	family	call	for	
identifying	 the	 standards	 for	measuring	 the	 characteristic	 of	 being	well-structured	 and	 not	 overly-
complex.	
10.5.4 ADV_INT.1	Well-structured	subset	of	TSF	internals	

Dependencies:	 ADV_IMP.1	Implementation	representation	of	the	TSF	

	 ADV_TDS.3	Basic	modular	design	

	 ALC_TAT.1	Well-defined	development	tools	
Objectives	

The	objective	of	this	component	is	to	provide	a	means	for	requiring	specific	portions	of	the	TSF	to	be	
well-structured.	 The	 intent	 is	 that	 the	 entire	 TSF	 has	 been	 designed	 and	 implemented	 using	 sound	
engineering	principles,	but	the	analysis	is	performed	upon	only	a	specific	subset.	

Application	notes	

This	component	requires	the	PP	or	ST	author	to	fill	in	an	assignment	with	the	subset	of	the	TSF.	This	
subset	may	be	identified	in	terms	of	the	internals	of	the	TSF	at	any	layer	of	abstraction.	For	example:	

a)	 the	structural	elements	of	the	TSF	as	identified	in	the	TOE	design	(e.g.	“The	developer	shall	design	
and	implement	the	audit	subsystem	such	that	it	has	well-structured	internals.”)	

b)	 the	 implementation	 (e.g.	 “The	developer	 shall	 design	and	 implement	 the	 encrypt.c	 and	decrypt.c	
files	such	that	it	has	well-structured	internals.”	or	“The	developer	shall	design	and	implement	the	
6227	IC	chip	such	that	it	has	well-structured	internals.”)	

It	is	likely	this	would	not	be	readily	accomplished	by	referencing	the	claimed	SFRs	(e.g.	“The	developer	
shall	design	and	implement	the	portion	of	the	TSF	that	provide	anonymity	as	defined	in	FPR_ANO.2	such	
that	it	has	well-structured	internals.”)	because	this	does	not	indicate	where	to	focus	the	analysis.	

This	 component	 has	 limited	 value	 and	 would	 be	 suitable	 in	 cases	 where	 potentially-malicious	
users/subjects	have	limited	or	strictly	controlled	access	to	the	TSFIs	or	where	there	is	another	means	
of	protection	(e.g.	domain	separation)	that	ensures	the	chosen	subset	of	the	TSF	cannot	be	adversely	
affected	by	the	rest	of	the	TSF	(e.g.	the	cryptographic	functionality,	which	is	isolated	from	the	rest	of	
the	TSF,	is	well-structured).	

Developer	action	elements	

ADV_INT.1.1D	

The	developer	shall	design	and	implement	[assignment:	subset	of	the	TSF]	such	that	it	has	well-
structured	internals.	

ADV_INT.1.2D	

The	developer	shall	provide	an	internals	description	and	justification.	

Content	and	presentation	elements	

ADV_INT.1.1C	

The	 justification	 shall	 explain	 the	 characteristics	 used	 to	 judge	 the	 meaning	 of	 “well-
structured”.	

ADV_INT.1.2C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 64	
	

	

The	TSF	 internals	 description	 shall	 demonstrate	 that	 the	 assigned	 subset	 of	 the	 TSF	 is	well-
structured.	

Evaluator	action	elements	

ADV_INT.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ADV_INT.1.2E	

The	evaluator	shall	perform	an	internals	analysis	on	the	assigned	subset	of	the	TSF.	
10.5.5 ADV_INT.2	Well-structured	internals	

Dependencies:	 ADV_IMP.1	Implementation	representation	of	the	TSF	

	 ADV_TDS.3	Basic	modular	design	

	 ALC_TAT.1	Well-defined	development	tools	
Objectives	

The	objective	of	this	component	is	to	provide	a	means	for	requiring	the	TSF	to	be	well-structured.	The	
intent	is	that	the	entire	TSF	has	been	designed	and	implemented	using	sound	engineering	principles.	

Application	notes	

Judgements	on	the	adequacy	of	the	structure	are	expected	to	be	derived	from	the	specific	technologies	
used	in	the	TOE.	This	component	calls	for	identifying	the	standards	for	measuring	the	characteristic	of	
being	well-structured.	

Developer	action	elements	

ADV_INT.2.1D	

The	developer	shall	design	and	implement	the	entire	TSF	such	that	it	has	well-structured	internals.	

ADV_INT.2.2D	

The	developer	shall	provide	an	internals	description	and	justification.	

Content	and	presentation	elements	

ADV_INT.2.1C	

The	justification	shall	describe	the	characteristics	used	to	judge	the	meaning	of	“well-structured”.	

ADV_INT.2.2C	

The	TSF	internals	description	shall	demonstrate	that	the	entire	TSF	is	well-structured.	

Evaluator	action	elements	

ADV_INT.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_INT.2.2E	

The	evaluator	shall	perform	an	internals	analysis	on	the	TSF.	
10.5.6 ADV_INT.3	Minimally	complex	internals	

Dependencies:	 ADV_IMP.1	Implementation	representation	of	the	TSF	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 65	
	

	

	 ADV_TDS.3	Basic	modular	design	

	 ALC_TAT.1	Well-defined	development	tools	
Objectives	

The	objective	of	this	component	is	to	provide	a	means	for	requiring	the	TSF	to	be	well-structured	and	
of	minimal	 complexity.	 The	 intent	 is	 that	 the	 entire	TSF	has	 been	designed	 and	 implemented	using	
sound	engineering	principles.	

Application	notes	

Judgements	 on	 the	 adequacy	 of	 the	 structure	 and	 complexity	 are	 expected	 to	 be	 derived	 from	 the	
specific	 technologies	 used	 in	 the	 TOE.	 This	 component	 calls	 for	 identifying	 the	 standards	 for	
measuring	the	structure	and	complexity.	

Developer	action	elements	

ADV_INT.3.1D	

The	developer	shall	design	and	implement	the	entire	TSF	such	that	it	has	well-structured	internals.	

ADV_INT.3.2D	

The	developer	shall	provide	an	internals	description	and	justification.	

Content	and	presentation	elements	

ADV_INT.3.1C	

The	justification	shall	describe	the	characteristics	used	to	judge	the	meaning	of	“well-structured”	and	
“complex”.	

ADV_INT.3.2C	

The	 TSF	 internals	 description	 shall	 demonstrate	 that	 the	 entire	 TSF	 is	 well-structured	 and	 is	 not	
overly	complex.	

Evaluator	action	elements	

ADV_INT.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_INT.3.2E	

The	evaluator	shall	perform	an	internals	analysis	on	the	entire	TSF.	
10.6 Security	policy	modellingFormal	TSF	model	(ADV_SPM)	

10.6.1 Objectives	

10.6.2 It	is	the	objective	of	this	family	to	provide	additional	assurance	through	the	development	of	a	
formal	representation	of	the	TSF	and	its	properties,	as	defined	by	the	SFRs	and	the	security	objectives	
of	the	ST,	further	referred	to	as	the	formal	model	and	the	formal	properties,	respectively.	It	is	expected	
to	establish	by	means	of	a	formal	proof	that	these	formal	properties	hold	in	the	formal	model	and	to	
establish	by	means	of	a	correspondence	rationale	that	the	TOE	functional	specification	preserves	the	
formal	 properties	 proven	 for	 the	 formal	 model.	 A	 formal	 proof	 or	 semiformal	 demonstration	 of	
preservation	of	the	formal	properties	in	the	formal	or	semiformal	specification	is	expected	if	the	latter	
exists	 (ADV_FSP.5	or	ADV_FSP.6,	 respectively).It	 is	 the	objective	of	 this	 family	 to	provide	 additional	
assurance	from	the	development	of	a	 formal	security	policy	model	of	the	TSFI	behaviour	of	the	TSF,	
and	establishing	a	correspondence	between	the	functional	specification	and	this	security	policy	model.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 66	
	

	

Preserving	internal	consistency	the	security	policy	model	is	expected	to	formally	establish	the	security	
principles	from	its	characteristics	by	means	of	a	mathematical	proof.	
10.6.310.6.2 Component	levelling	

This	family	contains	only	one	component.	
10.6.410.6.3 Application	notes	

Inadequacies	in	a	TOE	can	result	either	from	a	failure	in	understanding	the	security	requirements	or	
from	 a	 flawed	 implementation	 of	 those	 security	 requirements.	 Defining	 the	 security	 requirements	
adequately	 to	 ensure	 their	 understanding	 may	 be	 problematic	 because	 the	 definition	 must	 be	
sufficiently	precise	to	prevent	undesired	results	or	subtle	flaws	during	the	implementation	of	the	TOE.	
Throughout	the	design,	implementation,	and	review	processes,	a	formal	representation	of	the	TSF	and	
its	 properties	 may	 be	 used	 as	 precise	 design	 and	 implementation	 guidance,	 thereby	 providing	
increased	assurance	that	the	SFRs	and	the	security	objectives	of	the	ST	are	satisfied	by	the	TOE.	The	
resulting	guidance	and	 the	precision	of	 the	TSF	representation	and	 its	properties,	 as	defined	by	 the	
SFRs	and	the	security	objectives	of	the	ST,	are	significantly	improved	by	defining	the	formal	model	and	
specifying	 the	 formal	 properties	 using	 a	 formal	 language	 and	 providing	 a	 formal	 proof	 that	 these	
formal	properties	hold	in	the	formal	model.	

The	creation	of	a	formal	Security	Policy	Model	(SPM)	of	the	TSF	must	be	complete	with	respect	to	the	
ST;	 such	 a	 model	 helps	 to	 identify	 and	 eliminate	 ambiguous,	 inconsistent,	 contradictory,	 or	
unenforceable	elements	and	to	avoid	any	misunderstanding	on	the	scope.	To	this	end,	the	evaluation	
must	 determine	whether	 the	 formal	model	 and	 the	 formal	 properties	 completely	 cover	 the	 ST	 and	
accept	only	STs	and	SPMs	that	match	in	scope.	Once	the	TOE	has	been	built,	the	formal	model	serves	
the	 evaluation	 effort	 by	 contributing	 to	 the	 evaluator's	 judgement	 of	 how	 well	 the	 developer	 has	
understood	 the	 TSF	 being	 implemented	 and	whether	 there	 are	 inconsistencies	 between	 the	 formal	
properties	as	defined	by	the	security	objectives	of	the	ST	and	the	TOE	design.	The	confidence	gained	
by	 formally	 proving	 properties	 of	 the	 model	 is	 accompanied	 by	 confidence	 gained	 by	 defining	 a	
correspondence	rationale	between	the	formal	model	and	the	TOE	functional	specification	(as	defined	
for	 ADV_FSP).	 The	 correspondence	 rationale	 consists	 of	 a	 formal	 proof	 when	 mapping	 to	 formal	
aspects	of	the	TOE	functional	specification	and	semiformal	demonstration	otherwise.	A	combination	of	
different	formal	systems	(modelling	languages,	tools,	proof	systems)	can	be	used	for	different	parts	of	
the	ST	(SFRs	&	Security	Objectives)	and	correspondence	rationales.	

A	formal	security	model	is	a	formal	representation	of	the	important	aspects	of	security	(i.e.	the	TSF)	
and	 their	 relationship	 to	 the	 behaviour	 of	 the	 TOE.	 More	 precisely,	 the	 formal	 model	 is	 a	 formal	
representation	of	the	TSF	as	defined	by	the	entire	set	of	SFRs	described	in	the	ST	and	the	set	of	formal	
properties	covers	all	the	security	objectives	for	the	TOE.	

	

10.6.5 A	 formal	security	model	 is	a	 formal	 representation	of	 the	 important	aspects	of	 security	 (i.e.	
the	 TSF)	 and	 their	 relationship	 to	 the	 behaviour	 of	 the	 TOE.	More	 precisely,	 the	 formal	model	 is	 a	
formal	representation	of	the	TSF	as	defined	by	the	entire	set	of	SFRs	described	in	the	ST	and	the	set	of	
formal	properties	covers	all	the	security	objectives	for	the	TOE.Inadequacies	in	a	TOE	can	result	either	
from	a	failure	in	understanding	the	security	requirements	or	from	a	flawed	implementation	of	those	
security	requirements.	Defining	the	security	requirements	adequately	 to	ensure	their	understanding	
may	be	problematic	because	the	definition	must	be	sufficiently	precise	to	prevent	undesired	results	or	
subtle	 flaws	during	 implementation	of	 the	TOE.	Throughout	 the	design,	 implementation,	and	review	
processes,	 the	 modelled	 security	 requirements	 may	 and	 should	 be	 used	 as	 precise	 design	 and	
implementation	 guidance,	 thereby	 providing	 increased	 assurance	 that	 the	 modelled	 security	
requirements	modelled	via	 the	TSFI	behaviour	are	 satisfied	by	 the	TOE.	The	precision	of	 the	model	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 67	
	

	

and	 resulting	 guidance	 is	 significantly	 improved	 by	 casting	 the	 model	 in	 a	 formal	 language	 and	
verifying	the	security	requirements	by	automated	formal	proof	techniques.	
10.6.6 The	creation	of	a	formal	security	policy	model	helps	to	identify	and	eliminate	ambiguous,	
inconsistent,	incomplete,	contradictory,	or	unenforceable	security	policy	elements.	Once	the	TOE	has	
been	built,	the	formal	model	serves	the	evaluation	effort	by	contributing	to	the	evaluator's	judgement	
of	how	well	the	developer	has	understood	the	security	functionality	being	implemented	and	whether	
there	are	inconsistencies	between	the	security	requirements	and	the	TOE	design.	The	confidence	in	
the	model	is	accompanied	by	a	correspondence	analysis	for	model	elements	and	the	functional	
specification,	and	a	proof	that	the	model	contains	no	inconsistencies.	

10.6.7 A	formal	security	policy	model	is	a	precise	formal	presentation	of	the	important	aspects	of	
security	and	their	relationship	to	the	behaviour	of	the	TOE;	it	identifies	the	set	of	rules	and	practises	
that	regulates	how	the	TSF	manages,	protects,	and	otherwise	controls	the	system	resources.	The	
model	includes	the	set	of	restrictions	and	properties	that	specify	how	information	and	computing	
resources	are	prevented	from	being	used	to	violate	the	SFRs,	accompanied	by	a	persuasive	set	of	
engineering	arguments	showing	that	these	restrictions	and	properties	play	a	key	role	in	the	
enforcement	of	the	SFRs.	It	consists	both	of	the	formalisms	that	express	the	security	functionality,	as	
well	as	ancillary	text	to	explain	the	model	and	to	provide	it	with	context.	The	security	behaviour	of	the	
TSF	is	modelled	both	in	terms	of	external	behaviour	(i.e.	how	the	TSF	interacts	with	the	rest	of	the	TOE	
and	with	its	operational	environment),	as	well	as	its	internal	behaviour.	

10.6.8 The	security	policy	model	of	the	TOE	is	informally	abstracted	from	its	realization	by	
considering	the	TSFI	behaviour	defined	in	the	functional	specification,	which	is	strongly	connected	to	
the	SFRs	and	security	policies	expressed	in	the	ST.	The	purpose	of	formal	methods	lies	within	the	
enhancement	of	the	rigour	of	enforcement.	Informal	arguments	are	always	prone	to	fallacies;	
especially	if	relationships	among	subjects,	objects	and	operations	get	more	and	more	involved.	In	
order	to	minimize	the	risk	of	insecure	state	reachability	the	rules	and	characteristics	of	the	security	
policy	model	are	mapped	to	respective	properties	and	features	within	some	formal	system,	whose	
rigour	and	strength	can	afterwards	be	used	to	obtain	the	security	properties	by	means	of	theorems	
and	formal	proof.	

10.6.9 While	the	term	“formal	security	policy	model”	is	used	in	academic	circles,	ISO/IEC	15408's	
approach	has	no	fixed	definition	of	“security”;	it	would	equate	to	whatever	SFRs	are	being	claimed.	
Therefore,	the	formal	security	policy	model	is	merely	a	formal	representation	of	the	set	of	SFRs	being	
claimed	by	the	TOE.	

10.6.10 The	term	security	policy	has	traditionally	been	associated	with	only	access	control	policies,	
whether	label-based	(mandatory	access	control)	or	user-based	(discretionary	access	control).	
However,	a	security	policy	is	not	limited	to	access	control;	there	are	also	audit	policies,	identification	
policies,	authentication	policies,	encryption	policies,	management	policies,	and	any	other	security	
policies	that	are	enforced	by	the	TOE,	as	described	in	the	PP/ST.	

 	

10.6.11 ADV_SPM.1 Formal TOE security policy model 

Dependencies:	 ASE_OBJ.2	Security	Objectives	
ASE_REQ.2DV_FSP.5	Complete	semi-formal	functional	specification	with	additional	
error	information	Derived	security	requirements	

	 ADV_FSP.6	 4	 Complete	 functional	 specificationComplete	 semi-formal	 functional	
specification	with	additional	formal	specification	

Developer	action	elements	

ADV_SPM.1.1D	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 68	
	

	

The	 developer	 shall	 provide	 a	 formal	 security	 policy	 model	 for	 the	 TSF	 supported	 by	
explanatory	text.TSFI	behaviour	of	the	TOE.	

ADV_SPM.1.2D	

The	developer	shall	provide	the	set	of	formal	properties	for	the	TOE	supported	by	explanatory	
text.The	developer	shall	determine	all	TSFIs	and	analyse	for	each	TSFI	whether	its	behaviour	
can	be	modelled	by	the	formal	security	policy	model.	If	a	TSFI	cannot	be	modelled,	for	example	
caused	 by	 technical	 limitations,	 the	 developer	 shall	 analyse	 the	 impact	 of	 not	modelling	 the	
TSFI	behaviour	on	the	security	of	 the	TOE.	 If	parts	of	 the	TSFI	behaviour	cannot	be	modelled	
due	 to	 technical	 limitations,	 the	remaining	parts	shall	nevertheless	be	covered	by	 the	 formal	
model.	

ADV_SPM.1.3D	

The	 developer	 shall	 provide	 a	 formal	 proof	 that	 the	 model	 satisfies	 the	 formal	 properties	
supported	 by	 explanatory	 text.The	 formal	 security	 policy	model	 shall	 identify	 the	modelled	
TSFIs.	For	each	TSFI	covered	by	the	formal	security	policy	model,	the	model	shall	identify	the	
related	SFRs	and	security	policies	in	the	ST.	For	each	SFR	covered	by	the	formal	security	policy	
model,	the	model	shall	identify	the	relevant	portions	of	the	statement	of	SFRs.	

ADV_SPM.1.4D	

The	 developer	 shall	 provide	 a	 correspondence	 rationale	 between	 the	 formal	model	 and	 the	
functional	specification.For	all	TSFIs	that	are	not	modelled	by	the	formal	security	policy	model,	
the	developer	shall	identify	the	affected	SFRs	and	security	policies	in	the	ST.	

ADV_SPM.1.5D	

The	 developer	 shall	 provide	 a	 semi-formal	 demonstration	 of	 correspondence	 between	 the	
formal	 model	 and	 any	 semi-formal	 functional	 specification.The	 developer	 shall	 provide	 a	
formal	 proof	 of	 correspondence	 between	 the	model	 and	 any	 formal	 functional	 specification.	
The	proof	of	correspondence	shall	relate	model	elements	and	TSFIs.	With	ADV_SPM.1.3D,	 the	
given	proof	of	 correspondence	 thereby	 implicitly	provides	a	 correspondence	between	model	
elements	and	SFRs,	as	well	as	model	elements	and	security	policies.	The	developer	defines	a	
structured	process	for	identifying	and	presenting	corresponding	items	formally.	

ADV_SPM.1.6D	

The	developer	shall	provide	a	formal	proof	of	correspondence	between	the	formal	model	and	
any	formal	functional	specification.	

ADV_SPM.1.7D	

The	 developer	 shall	 provide	 all	 the	 tools	 used	 for	 the	 formal	 model,	 the	 formal	 properties,	
proofs	 and	 demonstrations.The	 developer	 shall	 provide	 a	 demonstration	 of	 correspondence	
between	 the	 model	 and	 the	 functional	 specification.	 This	 item	 shall	 demonstrate	 the	
correspondence	between	model	elements	and	TSFIs.	

Content	and	presentation	elements	

ADV_SPM.1.1C		

The	 formal	model,	properties	and	proofs	shall	be	defined	using	a	well-founded	mathematical	
theory.	

ADV_SPM.1.2C		

The	 explanatory	 text	 shall	 cover	 the	 entire	 formal	 model,	 formal	 properties	 and	 proofs,	
including	 instructions	 for	 reproducing	 the	 proofs	 and	 the	 correspondence	 rationale,	 and	 it	
shall	provide	a	rationale	for	the	modelling	and	verification	choices.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 69	
	

	

ADV_SPM.1.3C		

The	formal	model	shall	cover	the	complete	set	of	SFRs	that	define	the	TSF.	

ADV_SPM.1.4C		

The	formal	properties	shall	cover	the	complete	set	of	security	objectives	for	the	TOE.	

ADV_SPM.1.5C		

The	formal	proof	shall	show	that	the	formal	model	satisfies	all	the	formal	properties	and	that	
the	consistency	of	the	underlying	mathematical	theory	is	preserved.	

ADV_SPM.1.6C		

The	 correspondence	 rationale	 shall	 show	 that	 the	 formal	 properties	 proven	 for	 the	 formal	
model	hold	for	the	functional	specification.		

ADV_SPM.1.7C		

The	 semi-formal	 demonstration	 of	 correspondence	 shall	 show	 that	 the	 formal	 properties	
proven	for	the	formal	model	hold	for	any	semi-formal	functional	specification.		

ADV_SPM.1.8C		

The	 formal	 proof	 of	 correspondence	 shall	 show	 that	 the	 properties	 proven	 for	 the	 formal	
model	hold	for	any	formal	functional	specification.	

ADV_SPM.1.9C		

Any	 tool	 used	 to	 model	 or	 to	 prove	 the	 formal	 properties	 or	 the	 relationship	 between	 the	
formal	 model	 and	 the	 functional	 specification	 shall	 be	 well-defined	 and	 unambiguously	
identified	and	it	shall	be	accompanied	by	documentation	and	a	rationale	of	the	tool’s	suitability	
and	trustworthiness.			

ADV_SPM.1.1C	

The	model	 shall	define	 security	 for	 the	TOE	and	provide	a	 formal	proof	 that	 the	TOE	 cannot	
reach	a	state	that	is	not	secure.	

ADV_SPM.1.2C	

The	developer	shall	provide	an	analysis	why	the	chosen	modelling	formalism	is	appropriate.	

ADV_SPM.1.3C	

If	 tool	 support	 is	 used,	 the	 developer	 shall	 identify	 the	 tool	 chain	 used	 to	 verify	 the	 formal	
security	 policy	 model,	 including	 environments	 and	 version	 numbers.	 The	 developer	 shall	
provide	arguments	why	the	tool	chain	is	suited	and	trustworthy.	

ADV_SPM.1.4C	

The	developer	shall	define	how	the	formal	analysis	of	the	formal	security	policy	model	may	be	
reproduced	(for	example,	applying	an	interactive	theorem	prover	to	prove	correctness	of	the	
formal	security	policy	model).	

ADV_SPM.1.5C	

The	model	shall	be	 in	a	 formal	style,	supported	by	explanatory	 text	as	required,	and	 identify	
the	 TSFIs	 that	 are	modelled.	 Additionally,	 the	 SFRs	 and	 security	 policies	 of	 the	 TSF	 that	 are	
modelled	via	the	TSFI	behaviour	shall	be	presented.	The	model	shall	identify	all	TSFIs	that	are	
not	modelled	(compare	ADV_SPM.1.2D)	and	present	the	affected	SFRs	and	security	policies.	The	
model	shall	explain	the	reason	for	not	modelling	TSFIs	and	provide	an	impact	analysis	which	
shows	that	correctness	of	the	formal	model	is	not	affected.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 70	
	

	

ADV_SPM.1.6C	

The	correspondence	between	the	model	and	the	functional	specification	shall	be	at	the	correct	
level	of	formality.	The	developer	shall	describe	the	correspondence	analysis	process	and	define	
the	 applied	 understanding	 of	 correspondence.	 If	 a	 semi-formal	 functional	 specification	 is	
provided,	 the	 correspondence	 must	 be	 shown	 semi-formally.	 If	 a	 formal	 functional	
specification	is	provided,	the	correspondence	must	be	shown	formally.	

ADV_SPM.1.7C	

The	correspondence	shall	show	that	the	model	is	consistent	and	complete	with	respect	to	the	
functional	specification.	

Evaluator	action	elements	

ADV_SPM.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
10.7 TOE	design	(ADV_TDS)	

10.7.1 Objectives	

The	design	description	of	a	TOE	provides	both	context	 for	a	description	of	 the	TSF,	 and	a	 thorough	
description	of	the	TSF.	As	assurance	needs	increase,	the	level	of	detail	provided	in	the	description	also	
increases.	 As	 the	 size	 and	 complexity	 of	 the	 TSF	 increase,	 multiple	 levels	 of	 decomposition	 are	
appropriate.	The	design	requirements	are	 intended	 to	provide	 information	(commensurate	with	 the	
given	assurance	level)	so	that	a	determination	can	be	made	that	the	security	functional	requirements	
are	realized.	
10.7.2 Component	levelling	

The	components	in	this	family	are	levelled	on	the	basis	of	the	amount	of	information	that	is	required	
to	 be	 presented	 with	 respect	 to	 the	 TSF,	 and	 on	 the	 degree	 of	 formalism	 required	 of	 the	 design	
description.	
10.7.3 Application	notes	

The	goal	of	design	documentation	is	to	provide	sufficient	information	to	determine	the	TSF	boundary,	
and	 to	 describe	 how	 the	 TSF	 implements	 the	 Security	 Functional	 Requirements.	 The	 amount	 and	
structure	of	 the	design	documentation	will	depend	on	the	complexity	of	 the	TOE	and	the	number	of	
SFRs;	 in	 general,	 a	 very	 complex	 TOE	 with	 a	 large	 number	 of	 SFRs	 will	 require	 more	 design	
documentation	than	a	very	simple	TOE	implementing	only	a	few	SFRs.	Very	complex	TOEs	will	benefit	
(in	 terms	 of	 the	 assurance	 provided)	 from	 the	 production	 of	 differing	 levels	 of	 decomposition	 in	
describing	 the	 design,	 while	 very	 simple	 TOEs	 do	 not	 require	 both	 high-level	 and	 low-level	
descriptions	of	its	implementation.	

This	 family	 uses	 two	 levels	 of	 decomposition:	 the	 subsystem	 and	 the	module.	 A	module	 is	 the	most	
specific	description	of	 functionality:	 it	 is	a	description	of	the	 implementation.	A	developer	should	be	
able	 to	 implement	 the	part	of	 the	TOE	described	by	 the	module	with	no	 further	design	decisions.	A	
subsystem	is	a	description	of	the	design	of	the	TOE;	it	helps	to	provide	a	high-level	description	of	what	
a	portion	of	the	TOE	is	doing	and	how.	As	such,	a	subsystem	may	be	further	divided	into	lower-level	
subsystems,	or	into	modules.	Very	complex	TOEs	might	require	several	levels	of	subsystems	in	order	
to	adequately	convey	a	useful	description	of	how	the	TOE	works.	Very	simple	TOEs,	in	contrast,	might	
not	require	a	subsystem	level	of	description;	the	module	might	clearly	describe	how	the	TOE	works.	

The	general	approach	adopted	 for	design	documentation	 is	 that,	as	 the	 level	of	assurance	 increases,	
the	emphasis	of	description	shifts	from	the	general	(subsystem	level)	to	more	(module	level)	detail.	In	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 71	
	

	

cases	 where	 a	 module-level	 of	 abstraction	 is	 appropriate	 because	 the	 TOE	 is	 simple	 enough	 to	 be	
described	at	the	module	level,	yet	the	level	of	assurance	calls	for	a	subsystem	level	of	description,	the	
module-level	 description	 alone	 will	 suffice.	 For	 complex	 TOEs,	 however,	 this	 is	 not	 the	 case:	 an	
enormous	 amount	 of	 (module-level)	 detail	 would	 be	 incomprehensible	 without	 an	 accompanying	
subsystem	level	of	description.	

This	approach	follows	the	general	paradigm	that	providing	additional	detail	about	the	implementation	
of	 the	 TSF	 will	 result	 in	 greater	 assurance	 that	 the	 SFRs	 are	 implemented	 correctly,	 and	 provide	
information	that	can	be	used	to	demonstrate	this	in	testing	(ATE:	Tests).	

In	 the	 requirements	 for	 this	 family,	 the	 term	 interface	 is	 used	 as	 the	 means	 of	 communication	
(between	two	subsystems	or	modules).	It	describes	how	the	communication	is	invoked;	this	is	similar	
to	the	details	of	TSFI	(see	Functional	specification	(ADV_FSP)).	The	term	interaction	is	used	to	identify	
the	purpose	for	communication;	it	identifies	why	two	subsystems	or	modules	are	communicating.	

Detail	about	the	Subsystems	and	Modules	

The	requirements	define	collections	of	details	about	subsystems	and	modules	to	be	provided:	

a)	 The	subsystems	and	modules	are	identified	with	a	simple	list	of	what	they	are.	

b)	 Subsystems	and	modules	may	be	categorised	 (either	 implicitly	 or	 explicitly)	 as	 “SFR-enforcing”,	
“SFR-supporting”,	 or	 “SFR-non-interfering”;	 these	 terms	 are	 used	 the	 same	 as	 they	 are	 used	 in	
Functional	specification	(ADV_FSP).	

c)	 A	subsystem's	behaviour	is	what	it	does.	The	behaviour	may	also	be	categorised	as	SFR-enforcing,	
SFR-supporting,	or	SFR-non-interfering.	The	behaviour	of	 the	subsystem	is	never	categorised	as	
more	 SFR-relevant	 than	 the	 category	 of	 the	 subsystem	 itself.	 For	 example,	 an	 SFR-enforcing	
subsystem	 can	 have	 SFR-enforcing	 behaviour	 as	well	 as	 SFR-supporting	 or	 SFR-non-interfering	
behaviour.	

d)	 A	 behaviour	 summary	 of	 a	 subsystem	 is	 an	 overview	 of	 the	 actions	 it	 performs	 (e.g.	 “The	 TCP	
subsystem	assembles	IP	datagrams	into	reliable	byte	streams”).	

e)	 A	behaviour	description	 of	 a	 subsystem	 is	 an	explanation	of	 everything	 it	 does.	This	description	
should	 be	 at	 a	 level	 of	 detail	 that	 one	 can	 readily	 determine	 whether	 the	 behaviour	 has	 any	
relevance	to	the	enforcement	of	the	SFRs.	

f)	 A	description	of	interactions	among	or	between	subsystems	or	modules	identifies	the	reason	that	
subsystems	or	modules	 communicate,	 and	 characterizes	 the	 information	 that	 is	 passed.	 It	 need	
not	define	the	information	to	the	same	level	of	detail	as	an	interface	specification.	For	example,	it	
would	be	sufficient	to	say	“subsystem	X	requests	a	block	of	memory	from	the	memory	manager,	
which	responds	with	the	location	of	the	allocated	memory.	

g)	 A	 description	 of	 interfaces	 provides	 the	 details	 of	 how	 the	 interactions	 among	 modules	 are	
achieved.	Rather	 than	describing	 the	 reason	 the	modules	 are	 communicating	 or	 the	 purpose	 of	
their	 communication	 (that	 is,	 the	 description	 of	 interactions),	 the	 description	 of	 interfaces	
describes	 the	details	of	how	 that	 communication	 is	accomplished,	 in	 terms	of	 the	 structure	and	
contents	of	the	messages,	semaphores,	internal	process	communications,	etc.	

h)	 The	purpose	describes	how	a	module	provides	their	functionality.	It	provides	sufficient	detail	that	
no	 further	 design	 decisions	 are	 needed.	 The	 correspondence	 between	 the	 implementation	
representation	 that	 implements	 the	module,	 and	 the	 purpose	 of	 the	module	 should	 be	 readily	
apparent.	

i)	 A	module	is	otherwise	described	in	terms	of	whatever	is	identified	in	the	element.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 72	
	

	

Subsystems	and	modules,	 and	 “SFR-enforcing”,	 etc.	 are	all	 further	explained	 in	greater	detail	 in	A.4,	
ADV_TDS:	Subsystems	and	Modules.	
10.7.4 ADV_TDS.1	Basic	design	

Dependencies:	 ADV_FSP.2	Security-enforcing	functional	specification	

Developer	action	elements	

ADV_TDS.1.1D	

The	developer	shall	provide	the	design	of	the	TOE.	

ADV_TDS.1.2D	

The	 developer	 shall	 provide	 a	 mapping	 from	 the	 TSFI	 of	 the	 functional	 specification	 to	 the	
lowest	level	of	decomposition	available	in	the	TOE	design.	

Content	and	presentation	elements	

ADV_TDS.1.1C	

The	design	shall	describe	the	structure	of	the	TOE	in	terms	of	subsystems.	

ADV_TDS.1.2C	

The	design	shall	identify	all	subsystems	of	the	TSF.	

ADV_TDS.1.3C	

The	 design	 shall	 provide	 the	 behaviour	 summary	 of	 each	 SFR-supporting	 or	 SFR-non-
interfering	TSF	subsystem.	

ADV_TDS.1.4C	

The	design	shall	summarize	the	SFR-enforcing	behaviour	of	the	SFR-enforcing	subsystems.	

ADV_TDS.1.5C	

The	design	shall	provide	a	description	of	the	interactions	among	SFR-enforcing	subsystems	of	
the	TSF,	and	between	the	SFR-enforcing	subsystems	of	the	TSF	and	other	subsystems	of	the	TSF.	

ADV_TDS.1.6C	

The	 mapping	 shall	 demonstrate	 that	 all	 TSFIs	 trace	 to	 the	 behaviour	 described	 in	 the	 TOE	
design	that	they	invoke.	

Evaluator	action	elements	

ADV_TDS.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ADV_TDS.1.2E	

The	evaluator	shall	determine	that	the	design	is	an	accurate	and	complete	instantiation	of	all	
security	functional	requirements.	
10.7.5 ADV_TDS.2	Architectural	design	

Dependencies:	ADV_FSP.3	Functional	specification	with	complete	summary	

Developer	action	elements	

ADV_TDS.2.1D	

The	developer	shall	provide	the	design	of	the	TOE.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 73	
	

	

ADV_TDS.2.2D	

The	developer	shall	provide	a	mapping	from	the	TSFI	of	the	functional	specification	to	the	lowest	level	
of	decomposition	available	in	the	TOE	design.	

Content	and	presentation	elements	

ADV_TDS.2.1C	

The	design	shall	describe	the	structure	of	the	TOE	in	terms	of	subsystems.	

ADV_TDS.2.2C	

The	design	shall	identify	all	subsystems	of	the	TSF.	

ADV_TDS.2.3C	

The	design	shall	provide	the	behaviour	summary	of	each	SFR	non-interfering	subsystem	of	the	
TSF.	

ADV_TDS.2.4C	

The	design	shall	describe	the	SFR-enforcing	behaviour	of	the	SFR-enforcing	subsystems.	

ADV_TDS.2.5C	

The	 design	 shall	 summarize	 the	 SFR-supporting	 and	 SFR-non-interfering	 behaviour	 of	 the	 SFR-
enforcing	subsystems.	

ADV_TDS.2.6C	

The	design	shall	summarize	the	behaviour	of	the	SFR-supporting	subsystems.	

ADV_TDS.2.7C	

The	design	shall	provide	a	description	of	the	interactions	among	all	subsystems	of	the	TSF.	

ADV_TDS.2.8C	

The	mapping	shall	demonstrate	that	all	TSFIs	trace	to	the	behaviour	described	in	the	TOE	design	that	
they	invoke.	

Evaluator	action	elements	

ADV_TDS.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_TDS.2.2E	

The	evaluator	shall	determine	that	the	design	is	an	accurate	and	complete	instantiation	of	all	security	
functional	requirements.	
10.7.6 ADV_TDS.3	Basic	modular	design	

Dependencies:	ADV_FSP.4	Complete	functional	specification	

Developer	action	elements	

ADV_TDS.3.1D	

The	developer	shall	provide	the	design	of	the	TOE.	

ADV_TDS.3.2D	

The	developer	shall	provide	a	mapping	from	the	TSFI	of	the	functional	specification	to	the	lowest	level	
of	decomposition	available	in	the	TOE	design.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 74	
	

	

Content	and	presentation	elements	

ADV_TDS.3.1C	

The	design	shall	describe	the	structure	of	the	TOE	in	terms	of	subsystems.	

ADV_TDS.3.2C	

The	design	shall	describe	the	TSF	in	terms	of	modules.	

ADV_TDS.3.3C	

The	design	shall	identify	all	subsystems	of	the	TSF.	

ADV_TDS.3.4C	

The	design	shall	provide	a	description	of	each	subsystem	of	the	TSF.	

ADV_TDS.3.5C	

The	design	shall	provide	a	description	of	the	interactions	among	all	subsystems	of	the	TSF.	

ADV_TDS.3.6C	

The	design	shall	provide	a	mapping	from	the	subsystems	of	the	TSF	to	the	modules	of	the	TSF.	

ADV_TDS.3.7C	

The	 design	 shall	 describe	 each	 SFR-enforcing	module	 in	 terms	 of	 its	 purpose	 and	 relationship	
with	other	modules.	

ADV_TDS.3.8C	

The	 design	 shall	 describe	 each	 SFR-enforcing	module	 in	 terms	 of	 its	 SFR-related	 interfaces,	
return	 values	 from	 those	 interfaces,	 interaction	 with	 other	 modules	 and	 called	 SFR-related	
interfaces	to	other	SFR-enforcing	modules.	

ADV_TDS.3.9C	

The	 design	 shall	 describe	 each	 SFR-supporting	 and	 SFR-non-interfering	module	 in	 terms	 of	 its	
purpose	and	interaction	with	other	modules.	

ADV_TDS.3.10C	

The	mapping	shall	demonstrate	that	all	TSFIs	trace	to	the	behaviour	described	in	the	TOE	design	that	
they	invoke.	

Evaluator	action	elements	

ADV_TDS.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_TDS.3.2E	

The	evaluator	shall	determine	that	the	design	is	an	accurate	and	complete	instantiation	of	all	security	
functional	requirements.	
10.7.7 ADV_TDS.4	Semiformal	modular	design	

Dependencies:	 ADV_FSP.5	 Complete	 semi-formal	 functional	 specification	 with	 additional	 error	
information	

Developer	action	elements	

ADV_TDS.4.1D	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 75	
	

	

The	developer	shall	provide	the	design	of	the	TOE.	

ADV_TDS.4.2D	

The	developer	shall	provide	a	mapping	from	the	TSFI	of	the	functional	specification	to	the	lowest	level	
of	decomposition	available	in	the	TOE	design.	

Content	and	presentation	elements	

ADV_TDS.4.1C	

The	design	shall	describe	the	structure	of	the	TOE	in	terms	of	subsystems.	

ADV_TDS.4.2C	

The	design	shall	describe	the	TSF	in	terms	of	modules,	designating	each	module	as	SFR-enforcing,	
SFR-supporting,	or	SFR-non-interfering.	

ADV_TDS.4.3C	

The	design	shall	identify	all	subsystems	of	the	TSF.	

ADV_TDS.4.4C	

The	 design	 shall	 provide	 a	 semiformal	 description	 of	 each	 subsystem	 of	 the	 TSF,	 supported	 by	
informal,	explanatory	text	where	appropriate.	

ADV_TDS.4.5C	

The	design	shall	provide	a	description	of	the	interactions	among	all	subsystems	of	the	TSF.	

ADV_TDS.4.6C	

The	design	shall	provide	a	mapping	from	the	subsystems	of	the	TSF	to	the	modules	of	the	TSF.	

ADV_TDS.4.7C	

The	design	shall	describe	each	SFR-enforcing	and	SFR-supporting	module	in	terms	of	its	purpose	and	
relationship	with	other	modules.	

ADV_TDS.4.8C	

The	design	shall	describe	each	SFR-enforcing	and	SFR-supporting	module	in	terms	of	its	SFR-related	
interfaces,	return	values	from	those	interfaces,	interaction	with	other	modules	and	called	SFR-related	
interfaces	to	other	SFR-enforcing	or	SFR-supporting	modules.	

ADV_TDS.4.9C	

The	 design	 shall	 describe	 each	 SFR-non-interfering	module	 in	 terms	 of	 its	 purpose	 and	 interaction	
with	other	modules.	

ADV_TDS.4.10C	

The	mapping	shall	demonstrate	that	all	TSFIs	trace	to	the	behaviour	described	in	the	TOE	design	that	
they	invoke.	

Evaluator	action	elements	

ADV_TDS.4.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_TDS.4.2E	

The	evaluator	shall	determine	that	the	design	is	an	accurate	and	complete	instantiation	of	all	security	
functional	requirements.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 76	
	

	

10.7.8 ADV_TDS.5	Complete	semiformal	modular	design	

Dependencies:	 ADV_FSP.5	 Complete	 semi-formal	 functional	 specification	 with	 additional	 error	
information	

Developer	action	elements	

ADV_TDS.5.1D	

The	developer	shall	provide	the	design	of	the	TOE.	

ADV_TDS.5.2D	

The	developer	shall	provide	a	mapping	from	the	TSFI	of	the	functional	specification	to	the	lowest	level	
of	decomposition	available	in	the	TOE	design.	

Content	and	presentation	elements	

ADV_TDS.5.1C	

The	design	shall	describe	the	structure	of	the	TOE	in	terms	of	subsystems.	

ADV_TDS.5.2C	

The	design	shall	describe	the	TSF	in	terms	of	modules,	designating	each	module	as	SFR-enforcing,	SFR-
supporting,	or	SFR-non-interfering.	

ADV_TDS.5.3C	

The	design	shall	identify	all	subsystems	of	the	TSF.	

ADV_TDS.5.4C	

The	 design	 shall	 provide	 a	 semiformal	 description	 of	 each	 subsystem	 of	 the	 TSF,	 supported	 by	
informal,	explanatory	text	where	appropriate.	

ADV_TDS.5.5C	

The	design	shall	provide	a	description	of	the	interactions	among	all	subsystems	of	the	TSF.	

ADV_TDS.5.6C	

The	design	shall	provide	a	mapping	from	the	subsystems	of	the	TSF	to	the	modules	of	the	TSF.	

ADV_TDS.5.7C	

The	 design	 shall	 provide	 a	 semiformal	 description	 of	 each	 module	 in	 terms	 of	 its	 purpose,	
interaction,	 interfaces,	 return	 values	 from	 those	 interfaces,	 and	 called	 interfaces	 to	 other	modules,	
supported	by	informal,	explanatory	text	where	appropriate.	

ADV_TDS.5.8C	

The	mapping	shall	demonstrate	that	all	TSFIs	trace	to	the	behaviour	described	in	the	TOE	design	that	
they	invoke.	

Evaluator	action	elements	

ADV_TDS.5.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_TDS.5.2E	

The	evaluator	shall	determine	that	the	design	is	an	accurate	and	complete	instantiation	of	all	security	
functional	requirements.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 77	
	

	

10.7.9 ADV_TDS.6	Complete	semiformal	modular	design	with	formal	high-level	design	
presentation	

Dependencies:	 ADV_FSP.6	 Complete	 semi-formal	 functional	 specification	 with	 additional	 formal	
specification	

Developer	action	elements	

ADV_TDS.6.1D	

The	developer	shall	provide	the	design	of	the	TOE.	

ADV_TDS.6.2D	

The	developer	shall	provide	a	mapping	from	the	TSFI	of	the	functional	specification	to	the	lowest	level	
of	decomposition	available	in	the	TOE	design.	

ADV_TDS.6.3D	

The	developer	shall	provide	a	formal	specification	of	the	TSF	subsystems.	

ADV_TDS.6.4D	

The	developer	shall	provide	a	proof	of	correspondence	between	the	formal	specifications	of	the	
TSF	subsystems	and	of	the	functional	specification.	

Content	and	presentation	elements	

ADV_TDS.6.1C	

The	design	shall	describe	the	structure	of	the	TOE	in	terms	of	subsystems.	

ADV_TDS.6.2C	

The	design	shall	describe	the	TSF	in	terms	of	modules,	designating	each	module	as	SFR-enforcing,	SFR-
supporting,	or	SFR-non-interfering.	

ADV_TDS.6.3C	

The	design	shall	identify	all	subsystems	of	the	TSF.	

ADV_TDS.6.4C	

The	 design	 shall	 provide	 a	 semiformal	 description	 of	 each	 subsystem	 of	 the	 TSF,	 supported	 by	
informal,	explanatory	text	where	appropriate.	

ADV_TDS.6.5C	

The	design	shall	provide	a	description	of	the	interactions	among	all	subsystems	of	the	TSF.	

ADV_TDS.6.6C	

The	design	shall	provide	a	mapping	from	the	subsystems	of	the	TSF	to	the	modules	of	the	TSF.	

ADV_TDS.6.7C	

The	 design	 shall	 describe	 each	 module	 in	 semiformal	 style	 in	 terms	 of	 its	 purpose,	 interaction,	
interfaces,	return	values	 from	those	 interfaces,	and	called	 interfaces	to	other	modules,	supported	by	
informal,	explanatory	text	where	appropriate.	

ADV_TDS.6.8C	

The	 formal	 specification	 of	 the	 TSF	 subsystems	 shall	 describe	 the	 TSF	 using	 a	 formal	 style,	
supported	by	informal,	explanatory	text	where	appropriate.	

ADV_TDS.6.9C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 78	
	

	

The	mapping	shall	demonstrate	that	all	TSFIs	trace	to	the	behaviour	described	in	the	TOE	design	that	
they	invoke.	

ADV_TDS.6.10C	

The	proof	of	correspondence	between	the	 formal	specifications	of	 the	TSF	subsystems	and	of	
the	functional	specification	shall	demonstrate	that	all	behaviour	described	in	the	TOE	design	is	
a	correct	and	complete	refinement	of	the	TSFI	that	invoked	it.	

Evaluator	action	elements	

ADV_TDS.6.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ADV_TDS.6.2E	

The	evaluator	shall	determine	that	the	design	is	an	accurate	and	complete	instantiation	of	all	security	
functional	requirements.	
10.8 Composite	design	compliance	(ADV_COMP)	

10.8.1 Objectives	

The	 aim	 of	 this	 family	 is	 to	 determine	 whether	 the	 requirements	 on	 the	 dependent	 component,	
imposed	by	the	related	base	component,	are	fulfilled	in	the	composite	product.	
10.8.2 Component	levelling	

This	family	contains	only	one	component.	
10.8.3 Application	notes	

The	 requirements	 on	 the	 dependent	 component,	 imposed	 by	 the	 related	 base	 component,	 can	 be	
formulated	 in	 the	 relevant	 base	 component-related	 user	 guidance,	ETR	 for	 composite	 evaluation	 (in	
form	of	observations	and	recommendations)	and	report	of	the	base	component	evaluation	authority	
(e.g.	 in	form	of	constraints	and	recommendations).	The	developer	of	the	dependent	component	shall	
regard	each	of	these	sources,	 if	available	(cf.	Table	2,	Clause	14	in	ISO/IEC	15408-1),	and	implement	
the	dependent	component	in	such	a	way	that	the	applicable	requirements	are	fulfilled.	The	composite	
product	evaluator	shall	verify	that	all	stipulations	for	the	dependent	component	that	are	imposed	by	
the	 base	 component	 and	 provided	 in	 its	 evaluation	 related	 documentation	 are	 fulfilled	 by	 the	
composite	product,	i.e.	have	been	taken	into	account	by	the	dependent	component	developer.	

The	 composite	product	 evaluation	 sponsor	 shall	 ensure	 that	 the	 following	 is	made	available	 for	 the	
composite	product	evaluator:	

—	 the	base	component-related	user	guidance,	

—	 the	 base	 component-related	 ETR	 for	 composite	 evaluation	 prepared	 by	 the	 base	 component	
evaluator,	

—	 the	report	of	the	base	component	evaluation	authority,	

—	 a	 rationale	 for	 secure	 composite	 product	 implementation	 including	 evidence	 prepared	 by	 the	
dependent	component	developer.	

The	TSF	of	the	composite	product	are	represented	at	various	levels	of	abstraction	in	the	families	of	the	
development	 class	 ADV.	 From	 experience,	 the	 appropriate	 levels	 of	 design	 representation	 for	
examining,	whether	 the	requirements	of	 the	base	component	are	 fulfilled	by	 the	composite	product,	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 79	
	

	

are	the	TOE	design	(ADV_TDS),	security	architecture	(ADV_ARC)	and	the	implementation	(ADV_IMP).	
In	 case	 that,	 these	design	 representation	 levels	 are	not	 available	 (e.g.	 due	 to	 the	 assurance	package	
chosen	is	EAL1),	the	current	family	is	not	applicable	(see	the	next	paragraph	for	the	reason).	

Due	 to	 the	 definition	 of	 the	 composite	 product	 (cf.	 Subclause	 13.3.2.2	 in	 ISO/IEC	 15408-1)	 the	
interface	 between	 its	 base	 component	 and	 dependent	 component	 is	 the	 internal	 one,	 hence,	 a	
functional	specification	(ADV_FSP)	as	representation	level	is	not	appropriate	for	analysing	the	design	
compliance.	

Security	 architecture	 ADV_ARC	 as	 assurance	 family	 is	 dedicated	 to	 ensure	 that	 integrative	 security	
services	like	domain	separation,	self-protection	and	non-bypassability	properly	work.	It	is	impossible	
and	not	the	sense	of	the	composite	evaluation	to	have	an	insight	into	the	architectural	internals	of	the	
related	base	component	(it	is	a	matter	of	the	base	component	evaluation).	What	the	composite	product	
evaluator	has	to	do	in	the	context	of	ADV_ARC	is	

i.	 to	 determine	 whether	 the	 application	 dependent	 component	 uses	 services	 of	 the	 underlying	
platformrelated	base	component	within	its	own	Composite-STcomposite	product	Security	Target	
to	 provide	 domain	 separation,	 self-protection,	 non-bypassability	 and	 protected	 start-up;	 if	 no,	
there	is	are	no	further	composite	activities	for	ADV_ARC;	if	yes,	then	

ii.	 the	evaluator	has	to	determine,	whether	the	dependent	component	uses	these	services	of	the	base	
component	in	an	appropriate/secure	way.	(please	refer	to	the	base	component	user	guidance)..	

As	consistency	of	the	composite	product	security	policy	has	already	been	considered	in	the	context	of	
the	 Security	 Target	 in	 the	 assurance	 family	 ASE_COMP,	 there	 is	 no	 necessity	 to	 consider	 non-
contradictoriness	of	the	security	policy	model	(ADV_SPM)	of	the	composite	product	and	the	security	
policy	model	of	its	related	base	component.	
10.8.4 ADV_COMP.1	Design	compliance	with	the	base	component-related	user	guidance,	ETR	
for	composite	evaluation	and	report	of	the	base	component	evaluation	authority	

Dependencies:	No	dependencies	

10.8.4.1 Developer	action	elements	

10.8.4.1.1 ADV_COMP.1.1D	

The	developer	shall	provide	a	design	compliance	justification	

10.8.4.2 Content	and	presentation	elements	

10.8.4.2.1 ADV_COMP.1.1C	

The	 design	 compliance	 justification	 shall	 provide	 a	 rationale	 for	 design	 compliance	 –	 on	 an	
appropriate	representation	level	–	of	how	the	requirements	on	the	dependent	component	that	
are	imposed	by	the	related	base	component	are	fulfilled	in	the	composite	product.	

10.8.4.3 Evaluator	action	elements	

10.8.4.3.1 ADV_COMP.1.1E	

The	evaluator	shall	confirm	that	the	rationale	for	design	compliance	is	complete,	coherent,	and	
internally	consistent.	

11 Class	AGD:	Guidance	documents	

11.1 Introduction	

The	 guidance	 documents	 class	 provides	 the	 requirements	 for	 guidance	 documentation	 for	 all	 user	
roles.	 For	 the	 secure	 preparation	 and	 operation	 of	 the	 TOE	 it	 is	 necessary	 to	 describe	 all	 relevant	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 80	
	

	

aspects	 for	 the	 secure	 handling	 of	 the	 TOE.	 The	 class	 also	 addresses	 the	 possibility	 of	 unintended	
incorrect	configuration	or	handling	of	the	TOE.	

In	many	cases	it	may	be	appropriate	that	guidance	is	provided	in	separate	documents	for	preparation	
and	 operation	 of	 the	 TOE,	 or	 even	 separate	 for	 different	 user	 roles	 as	 end-users,	 administrators,	
application	programmers	using	software	or	hardware	interfaces,	etc.	

The	 guidance	 documents	 class	 is	 subdivided	 into	 two	 families	 which	 are	 concerned	 with	 the	
preparative	 user	 guidance	 (what	 has	 to	 be	 done	 to	 transform	 the	 delivered	 TOE	 into	 its	 evaluated	
configuration	 in	 the	operational	 environment	as	described	 in	 the	ST)	and	with	 the	operational	user	
guidance	(what	has	to	be	done	during	the	operation	of	the	TOE	in	its	evaluated	configuration).	

Figure	9	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	

	

Figure	9	—	AGD:	Guidance	documents	class	decomposition	

11.2 Operational	user	guidance	(AGD_OPE)	

11.2.1 Objectives	

Operational	user	guidance	refers	to	written	material	that	is	intended	to	be	used	by	all	types	of	users	of	
the	 TOE	 in	 its	 evaluated	 configuration:	 end-users,	 persons	 responsible	 for	 maintaining	 and	
administering	the	TOE	in	a	correct	manner	for	maximum	security,	and	by	others	(e.g.	programmers)	
using	 the	 TOE's	 external	 interfaces.	 Operational	 user	 guidance	 describes	 the	 security	 functionality	
provided	by	the	TSF,	provides	instructions	and	guidelines	(including	warnings),	helps	to	understand	
the	TSF	and	includes	the	security-critical	information,	and	the	security-critical	actions	required,	for	its	
secure	 use.	 Misleading	 and	 unreasonable	 guidance	 should	 be	 absent	 from	 the	 guidance	
documentation,	and	secure	procedures	for	all	modes	of	operation	should	be	addressed.	Insecure	states	
should	be	easy	to	detect.	

The	 operational	 user	 guidance	 provides	 a	 measure	 of	 confidence	 that	 non-malicious	 users,	
administrators,	 application	 providers	 and	 others	 exercising	 the	 external	 interfaces	 of	 the	 TOE	 will	
understand	 the	 secure	 operation	of	 the	TOE	 and	will	 use	 it	 as	 intended.	 The	 evaluation	of	 the	user	
guidance	includes	investigating	whether	the	TOE	can	be	used	in	a	manner	that	is	insecure	but	that	the	
user	of	the	TOE	would	reasonably	believe	to	be	secure.	The	objective	is	to	minimize	the	risk	of	human	
or	 other	 errors	 in	 operation	 that	 may	 deactivate,	 disable,	 or	 fail	 to	 activate	 security	 functionality,	
resulting	in	an	undetected	insecure	state.	
11.2.2 Component	levelling	

This	family	contains	only	one	component.	
11.2.3 Application	notes	

There	may	be	different	user	roles	or	groups	that	are	recognized	by	the	TOE	and	that	can	interact	with	
the	 TSF.	 These	 user	 roles	 and	 groups	 should	 be	 taken	 into	 consideration	 by	 the	 operational	 user	
guidance.	They	may	be	 roughly	 grouped	 into	 administrators	 and	non-administrative	users,	 or	more	
specifically	grouped	 into	persons	responsible	 for	receiving,	accepting,	 installing	and	maintaining	 the	
TOE,	 application	 programmers,	 revisors,	 auditors,	 daily-management,	 end-users.	 Each	 role	 can	
encompass	an	extensive	set	of	capabilities,	or	can	be	a	single	one.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 81	
	

	

The	 requirement	 AGD_OPE.1.1C	 encompasses	 the	 aspect	 that	 any	 warnings	 to	 the	 users	 during	
operation	of	a	TOE	with	regard	to	the	security	problem	definition	and	the	security	objectives	for	the	
operational	environment	described	in	the	PP/ST	are	appropriately	covered	in	the	user	guidance.	

The	concept	of	secure	values,	as	employed	in	AGD_OPE.1.3C,	has	relevance	where	a	user	has	control	
over	 security	 parameters.	 Guidance	 needs	 to	 be	 provided	 on	 secure	 and	 insecure	 settings	 for	 such	
parameters.	

AGD_OPE.1.4C	 requires	 that	 the	 user	 guidance	 describes	 the	 appropriate	 reactions	 to	 all	 security-
relevant	events.	Although	many	security-relevant	events	are	 the	 result	of	performing	 functions,	 this	
need	 not	 always	 be	 the	 case	 (e.g.	 the	 audit	 log	 fills	 up,	 an	 intrusion	 is	 detected).	 Furthermore,	 a	
security-relevant	event	may	happen	as	a	result	of	a	specific	chain	of	functions	or,	conversely,	several	
security-relevant	events	may	be	triggered	by	one	function.	

AGD_OPE.1.7C	 requires	 that	 the	 user	 guidance	 is	 clear	 and	 reasonable.	Misleading	 or	 unreasonable	
guidance	may	result	in	a	user	of	the	TOE	believing	that	the	TOE	is	secure	when	it	is	not.	

An	 example	 of	 misleading	 guidance	 would	 be	 the	 description	 of	 a	 single	 guidance	 instruction	 that	
could	be	parsed	in	more	than	one	way,	one	of	which	may	result	in	an	insecure	state.	

An	example	of	unreasonable	guidance	would	be	a	 recommendation	 to	 follow	a	procedure	 that	 is	 so	
complicated	that	it	cannot	reasonably	be	expected	that	users	will	follow	this	guidance.	
11.2.4 AGD_OPE.1	Operational	user	guidance	

Dependencies:	 ADV_FSP.1	Basic	functional	specification	

Developer	action	elements	

AGD_OPE.1.1D	

The	developer	shall	provide	operational	user	guidance.	

Content	and	presentation	elements	

AGD_OPE.1.1C	

The	operational	user	guidance	shall	describe,	for	each	user	role,	the	user-accessible	functions	
and	 privileges	 that	 should	 be	 controlled	 in	 a	 secure	 processing	 environment,	 including	
appropriate	warnings.	

AGD_OPE.1.2C	

The	 operational	 user	 guidance	 shall	 describe,	 for	 each	 user	 role,	 how	 to	 use	 the	 available	
interfaces	provided	by	the	TOE	in	a	secure	manner.	

AGD_OPE.1.3C	

The	operational	 user	 guidance	 shall	 describe,	 for	 each	user	 role,	 the	 available	 functions	 and	
interfaces,	in	particular	all	security	parameters	under	the	control	of	the	user,	indicating	secure	
values	as	appropriate.	

AGD_OPE.1.4C	

The	operational	user	guidance	shall,	 for	each	user	role,	clearly	present	each	type	of	security-
relevant	 event	 relative	 to	 the	user-accessible	 functions	 that	need	 to	be	performed,	 including	
changing	the	security	characteristics	of	entities	under	the	control	of	the	TSF.	

AGD_OPE.1.5C	

The	 operational	 user	 guidance	 shall	 identify	 all	 possible	 modes	 of	 operation	 of	 the	 TOE	
(including	 operation	 following	 failure	 or	 operational	 error),	 their	 consequences	 and	
implications	for	maintaining	secure	operation.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 82	
	

	

AGD_OPE.1.6C	

The	 operational	 user	 guidance	 shall,	 for	 each	 user	 role,	 describe	 the	 security	 controls	 to	 be	
followed	in	order	to	fulfil	the	security	objectives	for	the	operational	environment	as	described	
in	the	ST.	

AGD_OPE.1.7C	

The	operational	user	guidance	shall	be	clear	and	reasonable.	

Evaluator	action	elements	

AGD_OPE.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

11.3 Preparative	procedures	(AGD_PRE)	

11.3.1 Objectives	

Preparative	 procedures	 are	 useful	 for	 ensuring	 that	 the	 TOE	 has	 been	 received	 and	 installed	 in	 a	
secure	 manner	 as	 intended	 by	 the	 developer.	 The	 requirements	 for	 preparation	 call	 for	 a	 secure	
transition	 from	 the	delivered	TOE	 to	 its	 initial	 operational	 environment.	 This	 includes	 investigating	
whether	the	TOE	can	be	configured	or	installed	in	a	manner	that	 is	 insecure	but	that	the	user	of	the	
TOE	would	reasonably	believe	to	be	secure.	
11.3.2 Component	levelling	

This	family	contains	only	one	component.	
11.3.3 Application	notes	

It	 is	 recognized	 that	 the	 application	 of	 these	 requirements	will	 vary	 depending	 on	 aspects	 such	 as	
whether	 the	 TOE	 is	 delivered	 in	 an	 operational	 state,	 or	whether	 it	 has	 to	 be	 installed	 at	 the	 TOE	
owner's	site,	etc.	

The	 first	process	covered	by	 the	preparative	procedures	 is	 the	consumer's	secure	acceptance	of	 the	
received	TOE	in	accordance	with	the	developer's	delivery	procedures.	If	the	developer	has	not	defined	
delivery	procedures,	security	of	the	acceptance	has	to	be	ensured	otherwise.	

Installation	of	the	TOE	includes	transforming	its	operational	environment	into	a	state	that	conforms	to	
the	security	objectives	for	the	operational	environment	provided	in	the	ST.	

It	might	also	be	the	case	that	no	installation	is	necessary,	for	example	a	smart	card.	In	this	case	it	may	
be	inappropriate	to	require	and	analyse	installation	procedures.	

The	requirements	in	this	assurance	family	are	presented	separately	from	those	in	the	Operational	user	
guidance	 (AGD_OPE)	 family,	 due	 to	 the	 infrequent,	 possibly	 one-time	 use	 of	 the	 preparative	
procedures.	
11.3.4 AGD_PRE.1	Preparative	procedures	

Dependencies:	No	dependencies.	

Developer	action	elements	

AGD_PRE.1.1D	

The	developer	shall	provide	the	TOE	including	its	preparative	procedures.	

Content	and	presentation	elements	

AGD_PRE.1.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 83	
	

	

The	preparative	procedures	shall	describe	all	the	steps	necessary	for	secure	acceptance	of	the	
delivered	TOE	in	accordance	with	the	developer's	delivery	procedures.	

AGD_PRE.1.2C	

The	preparative	procedures	shall	describe	all	the	steps	necessary	for	secure	installation	of	the	
TOE	 and	 for	 the	 secure	 preparation	 of	 the	 operational	 environment	 in	 accordance	 with	 the	
security	objectives	for	the	operational	environment	as	described	in	the	ST.	

Evaluator	action	elements	

AGD_PRE.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

AGD_PRE.1.2E	

The	evaluator	shall	apply	the	preparative	procedures	to	confirm	that	the	TOE	can	be	prepared	
securely	for	operation.	

12 Class	ALC:	Life-cycle	support	

12.1 Introduction	

Life-cycle	 support	 is	 an	 aspect	 of	 establishing	 appropriate	 security	 controls	 in	 the	 development,	
production,	delivery	and	maintenance	of	the	TOE.	Confidence	in	the	correspondence	between	the	TOE	
security	requirements	and	the	TOE	is	greater	 if	security	analysis	and	the	production	of	the	evidence	
are	 done	 on	 a	 regular	 basis	 as	 an	 integral	 part	 of	 the	 development,	 production,	 delivery	 and	
maintenance	activities.	

During	the	life-cycle	of	the	TOE	it	is	distinguished	whether	the	TOE	is	under	the	responsibility	of	the	
TOE	 developer	 or	 the	 user	 rather	 than	 whether	 it	 is	 located	 in	 the	 development	 or	 the	 user	
environment.	 The	 point	 of	 transition	 is	when	 the	 TOE	 is	 accepted	 by	 the	 user.	 User	 in	 this	 context	
relates	to	the	end-user	as	well	as	product-	and	system	integrators.	

The	ALC	class	consists	of	nine	families:	

—	 Development	 Life-cycle	 definition	 (ALC_LCD)	 provides	 requirements	 for	 the	 developer’s	
description	of	the	life-cycle	model	used	in	the	development,	production,	delivery	and	maintenance	
life-cycle	of	the	TOE;	

—	 CM	capabilities	(ALC_CMC)	provides	requirements	for	the	management	of	the	configuration	items;	

—	 CM	scope	(ALC_CMS)	requires	a	minimum	set	of	configuration	items	to	be	managed	in	the	defined	
way;	

—	 Developer	 environment	 security	 (ALC_DVS)	 is	 concerned	with	 the	 developer's	 physical,	 logical,	
procedural,	personnel,	and	other	security	controls;	

—	 Tools	 and	 techniques	 (ALC_TAT)	 provides	 requirements	 for	 the	 development	 tools	 and	
implementation	standards	used	by	the	developer;	

—	 Flaw	remediation	(ALC_FLR)	provides	requirements	for	the	handling	of	security	flaws.	

—	 Delivery	(ALC_DEL)	provides	requirements	for	the	procedures	used	for	the	delivery	of	the	TOE	to	
the	 downstream	 user.	 Delivery	 processes	 occurring	 during	 the	 development	 of	 the	 TOE	 are	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 84	
	

	

denoted	 rather	 as	 transfers,	 and	 are	 handled	 in	 the	 context	 of	 integration	 and	 acceptance	
procedures	in	other	families	of	this	class.	

—	 ALC_TDA	is	concerned	with	the	generation	of	certain	artefacts	during	the	development	process.	

—	 ALC_COMP	 is	 concerned	 with	 the	 integration	 of	 composition	 parts	 and	 a	 consistency	 check	 of	
delivery	procedures.	

Throughout	 this	 class,	 development	 and	 related	 terms	 (developer,	 develop)	 are	meant	 in	 the	more	
general	 sense	 to	 comprise	development	 and	production,	whereas	production	 specifically	means	 the	
process	of	transforming	the	implementation	representation	into	the	final	TOE.	

Figure	10	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	

	

Figure	10	—	ALC:	Life-cycle	support	class	decomposition	

12.2 CM	capabilities	(ALC_CMC)	

12.2.1 Objectives	

Configuration	management	 (CM)	 techniques,	 properly	 defined	 as	 part	 of	 the	 development	 life-cycle	
model,	 contribute	 to	 the	 assurance	 argument	 that	 the	 TOE	 meets	 the	 SFRs.	 A	 Configuration	
Management	(CM)	system	that	is	managed	and	operated	correctly	will	help	ensure	the	integrity	of	the	
portions	of	the	TOE	that	are	controlled,	by	providing	a	method	of	tracking	any	changes	to	the	TOE,	and	
to	help	ensure	that	all	changes	to	the	TOE	are	authorized.	

The	objective	of	this	family	is	to	require	the	TOE	developer's	CM	system	to	have	certain	capabilities.	
These	capabilities	are	intendted	to	reduce	the	likelihood	that	accidental	or	unauthorised	modifications	
of	the	configuration	items	will	occur.	The	CM	system	should	support	maintaining	the	integrity	of	the	
TOE	throughout	the	part	of	the	TOE’s	life-cycle	that	is	under	the	control	of	the	developer.	

The	 objective	 of	 introducing	 automated	 CM	 tools	 is	 to	 increase	 the	 effectiveness	 of	 the	 CM	 system.	
While	 both	 automated	 and	manual	 CM	 systems	 can	 be	 bypassed,	 ignored,	 or	 proven	 insufficient	 to	
prevent	 unauthorised	 modification,	 automated	 systems	 are	 less	 susceptible	 to	 human	 error	 or	
negligence.	

The	objectives	of	this	family	include	the	following:	

a)	 ensuring	that	the	TOE	is	identifiable	and	complete	before	it	is	sent	to	the	downstream	user;	

b)	 ensuring	that	no	configuration	items	are	missed	during	evaluation;	

c)	 preventing	unauthorised	modification,	addition,	or	deletion	of	TOE	configuration	items.	

12.2.2 Component	levelling	

The	components	in	this	family	are	levelled	on	the	basis	of	the	CM	system	capabilities,	the	scope	of	the	
CM	documentation	and	the	evidence	provided	by	the	developer.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 85	
	

	

12.2.3 Application	notes	

In	the	case	where	the	TOE	is	a	subset	of	a	product,	the	requirements	of	this	family	apply	only	to	the	
TOE	configuration	items,	not	to	the	product	as	a	whole.	

For	developer	organizations	that	specify	more	than	one	CM	application,	or	include	different	instances	
of	a	CM	application	within	the	scope	of	the	TOEs	design,	development,	production	and	maintenance,	it	
is	 required	 to	 document	 all	 of	 them.	 For	 evaluation	 purposes,	 the	 set	 of	 CM	 applications	 should	 be	
regarded	as	parts	of	an	overall	CM	system,	applicable	to	the	TOE,	which	is	addressed	in	the	criteria.	

The	overall	CM	system	should	address	any	aspects	of	integration	between	component	CM	applications.	

Several	elements	of	this	family	refer	to	configuration	items.	These	elements	identify	CM	requirements	
to	be	imposed	on	all	items	identified	in	the	configuration	list,	but	leave	the	contents	of	the	list	to	the	
discretion	of	the	developer.	CM	scope	(ALC_CMS)	can	be	used	to	narrow	this	discretion	by	identifying	
specific	items	that	must	be	included	in	the	configuration	list,	and	hence	within	the	scope	of	the	overall	
CM	system.	

ALC_CMC.2.3C	introduces	a	requirement	that	the	CM	system	uniquely	identify	all	configuration	items.	
This	 also	 requires	 that	modifications	 to	 configuration	 items	 result	 in	 a	new,	unique	 identifier	 being	
assigned	to	the	configuration	item.	

ALC_CMC.3.8C	 introduces	 the	 requirement	 that	 the	 evidence	 shall	 demonstrate	 that	 the	 CM	 system	
operates	in	accordance	with	the	CM	plan.	Examples	of	such	evidence	might	be	documentation	such	as	
screen	 snapshots	 or	 audit	 trail	 output	 from	 the	 CM	 system,	 or	 a	 detailed	 demonstration	 of	 the	 CM	
system	by	the	developer.	The	evaluator	is	responsible	for	determining	that	this	evidence	is	sufficient	
to	show	that	the	CM	system	operates	in	accordance	with	the	CM	plan.	

ALC_CMC.4.5C	introduces	a	requirement	that	the	CM	system	provide	an	automated	means	to	support	
the	production	of	the	TOE.	This	requires	that	the	CM	system	provide	an	automated	means	to	assist	in	
determining	that	the	correct	configuration	items	are	used	in	generating	the	TOE.	

ALC_CMC.5.10C	 introduces	 a	 requirement	 that	 the	 CM	 system	 provide	 an	 automated	 means	 to	
ascertain	the	changes	between	the	TOE	and	 its	preceding	version.	 If	no	previous	version	of	 the	TOE	
exists,	the	developer	still	needs	to	provide	an	automated	means	to	ascertain	the	changes	between	the	
TOE	and	a	future	version	of	the	TOE.	
12.2.4 ALC_CMC.1	Labelling	of	the	TOE	

Dependencies:	ALC_CMS.1	TOE	CM	coverage	

Objectives	

A	unique	reference	is	required	to	ensure	that	there	is	no	ambiguity	in	terms	of	which	instance	of	the	
TOE	 is	 being	 evaluated.	 Labelling	 the	 TOE	with	 its	 reference	 ensures	 that	 users	 of	 the	 TOE	 can	 be	
aware	of	which	instance	of	the	TOE	they	are	using.	

Developer	action	elements	

ALC_CMC.1.1D	

The	developer	shall	provide	the	TOE	and	a	unique	reference	for	the	TOE.	

Content	and	presentation	elements	

ALC_CMC.1.1C	

The	TOE	shall	be	labelled	with	its	unique	reference.	

Evaluator	action	elements	

ALC_CMC.1.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 86	
	

	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
12.2.5 ALC_CMC.2	Use	of	the	CM	system	

Dependencies:	ALC_CMS.1	TOE	CM	coverage	

Objectives	

A	unique	reference	is	required	to	ensure	that	there	is	no	ambiguity	in	terms	of	which	instance	of	the	
TOE	 is	 being	 evaluated.	 Labelling	 the	 TOE	with	 its	 reference	 ensures	 that	 users	 of	 the	 TOE	 can	 be	
aware	of	which	instance	of	the	TOE	they	are	using.	

Unique	identification	of	the	configuration	items	leads	to	a	clearer	understanding	of	the	composition	of	
the	 TOE,	 which	 in	 turn	 helps	 to	 determine	 those	 items	 which	 are	 subject	 to	 the	 evaluation	
requirements	for	the	TOE.	

The	 use	 of	 a	 CM	 system	 increases	 assurance	 that	 the	 configuration	 items	 are	 maintained	 in	 a	
controlled	manner.	

Developer	action	elements	

ALC_CMC.2.1D	

The	developer	shall	provide	the	TOE	and	a	unique	reference	for	the	TOE.	

ALC_CMC.2.2D	

The	developer	shall	provide	the	CM	documentation.	

ALC_CMC.2.3D	

The	developer	shall	use	a	CM	system.	

Content	and	presentation	elements	

ALC_CMC.2.1C	

The	TOE	shall	be	labelled	with	its	unique	reference.	

ALC_CMC.2.2C	

The	CM	documentation	shall	describe	the	method	used	to	uniquely	 identify	the	configuration	
items.	

ALC_CMC.2.3C	

The	CM	system	shall	uniquely	identify	all	configuration	items.	

Evaluator	action	elements	

ALC_CMC.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
12.2.6 ALC_CMC.3	Authorization	controls	

Dependencies:	 ALC_CMS.1	TOE	CM	coverage	

	 ALC_DVS.1	Identification	of	security	measures	

	 ALC_LCD.1	Developer	defined	life-cycle	processes	
A	life-cycle	model	encompasses	the	procedures,	tools	and	techniques	used	to	develop	and	maintain	the	
TOE.	 Aspects	 of	 the	 process	 that	may	 be	 covered	 by	 such	 a	model	 include	 design	methods,	 review	
procedures,	 project	management	 controls,	 change	 control	 procedures,	 test	methods	 and	 acceptance	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 87	
	

	

procedures.	 An	 effective	 life-cycle	 model	 will	 address	 these	 aspects	 of	 the	 development	 and	
maintenance	 process	 within	 an	 overall	 management	 structure	 that	 assigns	 responsibilities	 and	
monitors	progress.	

There	 are	 different	 types	 of	 acceptance	 situations	 that	 are	 dealt	 with	 at	 different	 locations	 in	 the	
criteria:	

—	 acceptance	of	parts	delivered	by	subcontractors	(“integration”)	should	be	treated	in	this	family	

—	 Development	Life-cycle	definition	(ALC_LCD),	

—	 acceptance	subsequent	to	internal	transportations	in	Developer	environment	security	(ALC_DVS),	

—	 acceptance	of	parts	into	the	CM	system	in	CM	capabilities	(ALC_CMC),	and	

—	 acceptance	of	the	delivered	TOE	by	the	consumer	in	Delivery	(ALC_DEL).	

The	first	three	types	may	overlap.	

Although	life-cycle	definition	deals	with	the	maintenance	of	the	TOE	and	hence	with	aspects	becoming	
relevant	after	 the	completion	of	 the	evaluation,	 its	evaluation	adds	assurance	through	an	analysis	of	
the	life-cycle	information	for	the	TOE	provided	at	the	time	of	the	evaluation.	

A	 life-cycle	model	provides	 for	 the	necessary	control	over	 the	development	and	maintenance	of	 the	
TOE,	if	the	model	enables	sufficient	minimisation	of	the	danger	that	the	TOE	will	not	meet	its	security	
requirement.	

A	measurable	 life-cycle	model	 is	 a	model	 using	 some	quantitative	 valuation	 (arithmetic	 parameters	
and/or	metrics)	of	the	managed	product	in	order	to	measure	development	properties	of	the	product.	
Typical	metrics	are	source	code	complexity	metrics,	defect	density	(errors	per	size	of	code)	or	mean	
time	 to	 failure.	 For	 the	 security	 evaluation	 all	 those	 metrics	 are	 of	 relevance,	 which	 are	 used	 to	
increase	quality	by	decreasing	the	probability	of	faults	and	thereby	in	turn	increasing	assurance	in	the	
security	of	the	TOE.	

One	should	take	into	account	that	there	exist	standardised	life-cycle	models	on	the	one	hand	(like	the	
waterfall	 model)	 and	 standardised	 metrics	 on	 the	 other	 hand	 (like	 error	 density),	 which	 may	 be	
combined.	 The	 ISO/IEC	 15408	 series	 does	 not	 require	 the	 life-cycle	 to	 follow	 exactly	 one	 standard	
defining	both	aspects.	

ALC_LCD.1	Developer	defined	life-cycle	processes	

Objectives	

A	unique	reference	is	required	to	ensure	that	there	is	no	ambiguity	in	terms	of	which	instance	of	the	
TOE	 is	 being	 evaluated.	 Labelling	 the	 TOE	with	 its	 reference	 ensures	 that	 users	 of	 the	 TOE	 can	 be	
aware	of	which	instance	of	the	TOE	they	are	using.	

Unique	identification	of	the	configuration	items	leads	to	a	clearer	understanding	of	the	composition	of	
the	 TOE,	 which	 in	 turn	 helps	 to	 determine	 those	 items	 which	 are	 subject	 to	 the	 evaluation	
requirements	for	the	TOE.	

The	 use	 of	 a	 CM	 system	 increases	 assurance	 that	 the	 configuration	 items	 are	 maintained	 in	 a	
controlled	manner.	

Providing	 controls	 to	 ensure	 that	 unauthorised	modifications	 are	not	made	 to	 the	TOE	 (“CM	access	
control”),	and	ensuring	proper	functionality	and	use	of	the	CM	system,	helps	to	maintain	the	integrity	
of	the	TOE.	

Developer	action	elements	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 88	
	

	

ALC_CMC.3.1D	

The	developer	shall	provide	the	TOE	and	a	unique	reference	for	the	TOE.	

ALC_CMC.3.2D	

The	developer	shall	provide	the	CM	documentation.	

ALC_CMC.3.3D	

The	developer	shall	use	a	CM	system.	

Content	and	presentation	elements	

ALC_CMC.3.1C	

The	TOE	shall	be	labelled	with	its	unique	reference.	

ALC_CMC.3.2C	

The	CM	documentation	shall	describe	the	method	used	to	uniquely	identify	the	configuration	items.	

ALC_CMC.3.3C	

The	CM	system	shall	uniquely	identify	all	configuration	items.	

ALC_CMC.3.4C	

The	 CM	 system	 shall	 provide	 controls	 such	 that	 only	 authorized	 changes	 are	 made	 to	 the	
configuration	items.	

ALC_CMC.3.5C	

The	CM	documentation	shall	include	a	CM	plan.	

ALC_CMC.3.6C	

The	CM	plan	shall	describe	how	the	CM	system	is	used	for	the	development	of	the	TOE.	

ALC_CMC.3.7C	

The	evidence	shall	demonstrate	that	all	configuration	items	are	being	maintained	under	the	CM	
system.	

ALC_CMC.3.8C	

The	evidence	shall	demonstrate	that	 the	CM	system	is	being	operated	 in	accordance	with	the	
CM	plan.	

Evaluator	action	elements	

ALC_CMC.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
12.2.7 ALC_CMC.4	Production	support,	acceptance	procedures	and	automation	

Dependencies:	 ALC_CMS.1	TOE	CM	coverage	

	 ALC_DVS.1	Identification	of	security	measures	

	 ALC_LCD.1	Developer	defined	life-cycle	processes	
A	life-cycle	model	encompasses	the	procedures,	tools	and	techniques	used	to	develop	and	maintain	the	
TOE.	 Aspects	 of	 the	 process	 that	may	 be	 covered	 by	 such	 a	model	 include	 design	methods,	 review	
procedures,	 project	management	 controls,	 change	 control	 procedures,	 test	methods	 and	 acceptance	
procedures.	 An	 effective	 life-cycle	 model	 will	 address	 these	 aspects	 of	 the	 development	 and	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 89	
	

	

maintenance	 process	 within	 an	 overall	 management	 structure	 that	 assigns	 responsibilities	 and	
monitors	progress.	

There	 are	 different	 types	 of	 acceptance	 situations	 that	 are	 dealt	 with	 at	 different	 locations	 in	 the	
criteria:	

—	 acceptance	of	parts	delivered	by	subcontractors	(“integration”)	should	be	treated	in	this	family	

—	 Development	Life-cycle	definition	(ALC_LCD),	

—	 acceptance	subsequent	to	internal	transportations	in	Developer	environment	security	(ALC_DVS),	

—	 acceptance	of	parts	into	the	CM	system	in	CM	capabilities	(ALC_CMC),	and	

—	 acceptance	of	the	delivered	TOE	by	the	consumer	in	Delivery	(ALC_DEL).	

The	first	three	types	may	overlap.	

Although	life-cycle	definition	deals	with	the	maintenance	of	the	TOE	and	hence	with	aspects	becoming	
relevant	after	 the	completion	of	 the	evaluation,	 its	evaluation	adds	assurance	through	an	analysis	of	
the	life-cycle	information	for	the	TOE	provided	at	the	time	of	the	evaluation.	

A	 life-cycle	model	provides	 for	 the	necessary	control	over	 the	development	and	maintenance	of	 the	
TOE,	if	the	model	enables	sufficient	minimisation	of	the	danger	that	the	TOE	will	not	meet	its	security	
requirement.	

A	measurable	 life-cycle	model	 is	 a	model	 using	 some	quantitative	 valuation	 (arithmetic	 parameters	
and/or	metrics)	of	the	managed	product	in	order	to	measure	development	properties	of	the	product.	
Typical	metrics	are	source	code	complexity	metrics,	defect	density	(errors	per	size	of	code)	or	mean	
time	 to	 failure.	 For	 the	 security	 evaluation	 all	 those	 metrics	 are	 of	 relevance,	 which	 are	 used	 to	
increase	quality	by	decreasing	the	probability	of	faults	and	thereby	in	turn	increasing	assurance	in	the	
security	of	the	TOE.	

One	should	take	into	account	that	there	exist	standardised	life-cycle	models	on	the	one	hand	(like	the	
waterfall	 model)	 and	 standardised	 metrics	 on	 the	 other	 hand	 (like	 error	 density),	 which	 may	 be	
combined.	 The	 ISO/IEC	 15408	 series	 does	 not	 require	 the	 life-cycle	 to	 follow	 exactly	 one	 standard	
defining	both	aspects.	

ALC_LCD.1	Developer	defined	life-cycle	processes	

Objectives	

A	unique	reference	is	required	to	ensure	that	there	is	no	ambiguity	in	terms	of	which	instance	of	the	
TOE	 is	 being	 evaluated.	 Labelling	 the	 TOE	with	 its	 reference	 ensures	 that	 users	 of	 the	 TOE	 can	 be	
aware	of	which	instance	of	the	TOE	they	are	using.	

Unique	identification	of	the	configuration	items	leads	to	a	clearer	understanding	of	the	composition	of	
the	 TOE,	 which	 in	 turn	 helps	 to	 determine	 those	 items	 which	 are	 subject	 to	 the	 evaluation	
requirements	for	the	TOE.	

The	 use	 of	 a	 CM	 system	 increases	 assurance	 that	 the	 configuration	 items	 are	 maintained	 in	 a	
controlled	manner.	

Providing	 access	 controls	 to	 help	 ensure	 that	 unauthorised	modifications	 are	 not	made	 to	 the	 TOE	
(“CM	access	control”),	and	ensuring	proper	functionality	and	use	of	the	CM	system,	helps	to	maintain	
the	integrity	of	the	TOE.	

The	 purpose	 of	 the	 acceptance	 procedures	 is	 to	 ensure	 that	 the	 parts	 of	 the	 TOE	 are	 of	 adequate	
quality	 and	 to	 confirm	 that	 any	 creation	 or	 modification	 of	 configuration	 items	 is	 authorized.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 90	
	

	

Acceptance	 procedures	 are	 an	 essential	 element	 in	 integration	 processes	 and	 in	 the	 life-cycle	
management	of	the	TOE.	

In	a	CM	system	where	the	quantity	and	organization	of	configuration	items	is	complex,	it	is	difficult	to	
control	changes	without	the	support	of	automated	tools.	In	particular,	these	automated	tools	need	to	
be	 able	 to	 support	 the	 numerous	 changes	 that	 occur	 during	 development	 and	 ensure	 that	 those	
changes	are	authorized.	It	is	an	objective	of	this	component	to	ensure	that	the	configuration	items	are	
controlled	through	automated	means.	In	the	case	where	the	overall	CM	system	includes	more	than	one	
CM	application	then	automated	tools	can	also	support	integration	between	the	CM	applications	and	of	
the	TOE.	

Production	support	procedures	help	to	ensure	that	the	generation	of	the	TOE	from	a	managed	set	of	
configuration	 items	 is	 correctly	 performed	 in	 an	 authorized	manner,	 particularly	 in	 the	 case	when	
different	developers	are	involved	and	integration	processes	have	to	be	carried	out.	

Developer	action	elements	

ALC_CMC.4.1D	

The	developer	shall	provide	the	TOE	and	a	unique	reference	for	the	TOE.	

ALC_CMC.4.2D	

The	developer	shall	provide	the	CM	documentation.	

ALC_CMC.4.3D	

The	developer	shall	use	a	CM	system.	

Content	and	presentation	elements	

ALC_CMC.4.1C	

The	TOE	shall	be	labelled	with	its	unique	reference.	

ALC_CMC.4.2C	

The	 CM	 documentation	 shall	 describe	 the	 method	 or	 methods	 used	 to	 uniquely	 identify	 the	
configuration	items.	

ALC_CMC.4.3C	

The	CM	system	shall	uniquely	identify	all	configuration	items.	

ALC_CMC.4.4C	

The	CM	system	shall	provide	automated	controls	such	that	only	authorized	changes	are	made	to	the	
configuration	items.	

ALC_CMC.4.5C	

The	CM	system	shall	support	the	production	of	the	TOE	by	automated	means.	

ALC_CMC.4.6C	

The	CM	documentation	shall	include	a	CM	plan.	

ALC_CMC.4.7C	

The	CM	plan	shall	describe	how	the	CM	system	is	used	for	the	development	of	the	TOE.	

ALC_CMC.4.8C	

The	 CM	 plan	 shall	 describe	 the	 procedures	 used	 to	 accept	 modified	 or	 newly	 created	
configuration	items	as	part	of	the	TOE.	

ALC_CMC.4.9C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 91	
	

	

The	 evidence	 shall	 demonstrate	 that	 all	 configuration	 items	 are	 being	 maintained	 under	 the	 CM	
system.	

ALC_CMC.4.10C	

The	evidence	shall	demonstrate	that	the	CM	system	is	being	operated	in	accordance	with	the	CM	plan.	

Evaluator	action	elements	

ALC_CMC.4.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
12.2.8 ALC_CMC.5	Advanced	support	

Dependencies:	 ALC_CMS.1	TOE	CM	coverage	

	 ALC_DVS.2	Sufficiency	of	security	measures	

	 ALC_LCD.1	Developer	defined	life-cycle	processes	
A	life-cycle	model	encompasses	the	procedures,	tools	and	techniques	used	to	develop	and	maintain	the	
TOE.	 Aspects	 of	 the	 process	 that	may	 be	 covered	 by	 such	 a	model	 include	 design	methods,	 review	
procedures,	 project	management	 controls,	 change	 control	 procedures,	 test	methods	 and	 acceptance	
procedures.	 An	 effective	 life-cycle	 model	 will	 address	 these	 aspects	 of	 the	 development	 and	
maintenance	 process	 within	 an	 overall	 management	 structure	 that	 assigns	 responsibilities	 and	
monitors	progress.	

There	 are	 different	 types	 of	 acceptance	 situations	 that	 are	 dealt	 with	 at	 different	 locations	 in	 the	
criteria:	

—	 acceptance	of	parts	delivered	by	subcontractors	(“integration”)	should	be	treated	in	this	family	

—	 Development	Life-cycle	definition	(ALC_LCD),	

—	 acceptance	subsequent	to	internal	transportations	in	Developer	environment	security	(ALC_DVS),	

—	 acceptance	of	parts	into	the	CM	system	in	CM	capabilities	(ALC_CMC),	and	

—	 acceptance	of	the	delivered	TOE	by	the	consumer	in	Delivery	(ALC_DEL).	

The	first	three	types	may	overlap.	

Although	life-cycle	definition	deals	with	the	maintenance	of	the	TOE	and	hence	with	aspects	becoming	
relevant	after	 the	completion	of	 the	evaluation,	 its	evaluation	adds	assurance	through	an	analysis	of	
the	life-cycle	information	for	the	TOE	provided	at	the	time	of	the	evaluation.	

A	 life-cycle	model	provides	 for	 the	necessary	control	over	 the	development	and	maintenance	of	 the	
TOE,	if	the	model	enables	sufficient	minimisation	of	the	danger	that	the	TOE	will	not	meet	its	security	
requirement.	

A	measurable	 life-cycle	model	 is	 a	model	 using	 some	quantitative	 valuation	 (arithmetic	 parameters	
and/or	metrics)	of	the	managed	product	in	order	to	measure	development	properties	of	the	product.	
Typical	metrics	are	source	code	complexity	metrics,	defect	density	(errors	per	size	of	code)	or	mean	
time	 to	 failure.	 For	 the	 security	 evaluation	 all	 those	 metrics	 are	 of	 relevance,	 which	 are	 used	 to	
increase	quality	by	decreasing	the	probability	of	faults	and	thereby	in	turn	increasing	assurance	in	the	
security	of	the	TOE.	

One	should	take	into	account	that	there	exist	standardised	life-cycle	models	on	the	one	hand	(like	the	
waterfall	 model)	 and	 standardised	 metrics	 on	 the	 other	 hand	 (like	 error	 density),	 which	 may	 be	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 92	
	

	

combined.	 The	 ISO/IEC	 15408	 series	 does	 not	 require	 the	 life-cycle	 to	 follow	 exactly	 one	 standard	
defining	both	aspects.	

ALC_LCD.1	Developer	defined	life-cycle	processes	

Objectives	

A	unique	reference	is	required	to	ensure	that	there	is	no	ambiguity	in	terms	of	which	instance	of	the	
TOE	 is	 being	 evaluated.	 Labelling	 the	 TOE	with	 its	 reference	 ensures	 that	 users	 of	 the	 TOE	 can	 be	
aware	of	which	instance	of	the	TOE	they	are	using.	

Unique	identification	of	the	configuration	items	leads	to	a	clearer	understanding	of	the	composition	of	
the	 TOE,	 which	 in	 turn	 helps	 to	 determine	 those	 items	 which	 are	 subject	 to	 the	 evaluation	
requirements	for	the	TOE.	

The	 use	 of	 a	 CM	 system	 increases	 assurance	 that	 the	 configuration	 items	 are	 maintained	 in	 a	
controlled	manner.	

Providing	 controls	 to	 ensure	 that	 unauthorised	modifications	 are	not	made	 to	 the	TOE	 (“CM	access	
control”),	and	ensuring	proper	functionality	and	use	of	the	CM	system,	helps	to	maintain	the	integrity	
of	the	TOE.	

The	purpose	of	the	acceptance	procedures	is	to	ensure	that	the	parts	of	the	TOE	meet	defined	criteria	
in	 regard	 to	 the	 integrity	 of	 the	 TOE.	 Criteria	 for	 acceptance	 procedures	may	 include	 code	 review,	
checking	for	vulnerabilities,	authenticity	checking,	and	functional	testing	to	confirm	that	any	creation	
or	modification	of	configuration	items	is	authorized.	Acceptance	procedures	are	an	essential	element	
in	integration	processes	and	in	the	life-cycle	management	of	the	TOE.	

In	 development	 environments	 where	 the	 configuration	 items	 are	 complex,	 it	 is	 difficult	 to	 control	
changes	without	the	support	of	automated	tools.	In	particular,	these	automated	tools	need	to	be	able	
to	support	the	numerous	changes	that	occur	during	development	and	ensure	that	those	changes	are	
authorized.	It	 is	an	objective	of	this	component	to	ensure	that	the	configuration	items	are	controlled	
through	automated	means.	If	the	TOE	is	developed	by	multiple	developers,	i.e.	integration	has	to	take	
place,	the	use	of	automatic	tools	is	adequate.	

Production	support	procedures	help	to	ensure	that	the	generation	of	the	TOE	from	a	managed	set	of	
configuration	 items	 is	 correctly	 performed	 in	 an	 authorized	manner,	 particularly	 in	 the	 case	when	
different	developers	are	involved	and	integration	processes	have	to	be	carried	out.	

Requiring	 that	 the	 CM	 system	be	 able	 to	 identify	 the	 version	 of	 the	 implementation	 representation	
from	which	the	TOE	is	generated	helps	to	ensure	that	the	integrity	of	this	material	is	preserved	by	the	
appropriate	technical,	physical	and	procedural	safeguards.	

Providing	an	automated	means	of	ascertaining	changes	between	versions	of	the	TOE	and	identifying	
which	 configuration	 items	 are	 affected	 by	 modifications	 to	 other	 configuration	 items	 assists	 in	
determining	 the	 impact	 of	 the	 changes	 between	 successive	 versions	 of	 the	 TOE.	 This	 in	 turn	 can	
provide	valuable	 information	 in	determining	whether	 changes	 to	 the	TOE	result	 in	all	 configuration	
items	being	consistent	with	one	another.	

Developer	action	elements	

ALC_CMC.5.1D	

The	developer	shall	provide	the	TOE	and	a	unique	reference	for	the	TOE.	

ALC_CMC.5.2D	

The	developer	shall	provide	the	CM	documentation.	

ALC_CMC.5.3D	

The	developer	shall	use	a	CM	system.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 93	
	

	

Content	and	presentation	elements	

ALC_CMC.5.1C	

The	TOE	shall	be	labelled	with	its	unique	reference.	

ALC_CMC.5.2C	

The	CM	documentation	shall	describe	the	method	used	to	uniquely	identify	the	configuration	items.	

ALC_CMC.5.3C	

The	CM	documentation	 shall	 justify	 that	 the	 acceptance	procedures	 provide	 for	 an	 adequate	
and	appropriate	review	of	changes	to	all	configuration	items.	

ALC_CMC.5.4C	

The	CM	system	shall	uniquely	identify	all	configuration	items.	

ALC_CMC.5.5C	

The	CM	system	shall	provide	automated	controls	such	that	only	authorized	changes	are	made	to	the	
configuration	items.	

ALC_CMC.5.6C	

The	CM	system	shall	support	the	production	of	the	TOE	by	automated	means.	

ALC_CMC.5.7C	

The	CM	system	shall	ensure	that	the	person	responsible	for	accepting	a	configuration	item	into	
CM	is	not	the	person	who	developed	it.	

ALC_CMC.5.8C	

The	CM	system	shall	identify	the	configuration	items	that	comprise	the	TSF.	

ALC_CMC.5.9C	

The	CM	system	shall	support	the	audit	of	all	changes	to	the	TOE	by	automated	means,	including	
the	originator,	date,	and	time	in	the	audit	trail.	

ALC_CMC.5.10C	

The	CM	system	shall	provide	an	automated	means	to	identify	all	other	configuration	items	that	
are	affected	by	the	change	of	a	given	configuration	item.	

ALC_CMC.5.11C	

The	CM	system	shall	be	able	to	identify	the	version	of	the	implementation	representation	from	
which	the	TOE	is	generated.	

ALC_CMC.5.12C	

The	CM	documentation	shall	include	a	CM	plan.	

ALC_CMC.5.13C	

The	CM	plan	shall	describe	how	the	CM	system	is	used	for	the	development	of	the	TOE.	

ALC_CMC.5.14C	

The	 CM	plan	 shall	 describe	 the	 procedures	 used	 to	 accept	modified	 or	 newly	 created	 configuration	
items	as	part	of	the	TOE.	

ALC_CMC.5.15C	

The	 evidence	 shall	 demonstrate	 that	 all	 configuration	 items	 are	 being	 maintained	 under	 the	 CM	
system.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 94	
	

	

ALC_CMC.5.16C	

The	evidence	shall	demonstrate	that	the	CM	system	is	being	operated	in	accordance	with	the	CM	plan.	

Evaluator	action	elements	

ALC_CMC.5.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ALC_CMC.5.2E	

The	 evaluator	 shall	 determine	 that	 the	 application	 of	 the	 production	 support	 procedures	
results	in	a	TOE	as	provided	by	the	developer	for	testing	activities.	
12.3 CM	scope	(ALC_CMS)	

12.3.1 Objectives	

The	objective	of	this	family	is	to	identify	items	to	be	included	as	configuration	items	and	hence	placed	
under	 the	 CM	 requirements	 of	 CM	 capabilities	 (ALC_CMC).	 Applying	 configuration	 management	 to	
these	additional	items	provides	additional	assurance	that	the	integrity	of	TOE	is	maintained.	
12.3.2 Component	levelling	

The	components	 in	this	 family	are	 levelled	on	the	basis	of	which	of	 the	 following	are	required	to	be	
included	as	configuration	items:	the	TOE	and	the	evaluation	evidence	required	by	the	SARs;	the	parts	
of	 the	 TOE;	 the	 implementation	 representation;	 security	 flaws;	 and	 development	 tools	 and	 related	
information.	
12.3.3 Application	notes	

While	CM	scope	(ALC_CMS)	mandates	a	 list	of	configuration	 items	and	that	each	 item	on	this	 list	be	
under	CM,	CM	capabilities	(ALC_CMC)	leaves	the	contents	of	the	configuration	list	to	the	discretion	of	
the	developer.	CM	scope	(ALC_CMS)	narrows	this	discretion	by	identifying	items	that	must	be	included	
in	the	configuration	list,	and	hence	come	under	the	CM	requirements	of	CM	capabilities	(ALC_CMC).	
12.3.4 ALC_CMS.1	TOE	CM	coverage	

Dependencies:	No	dependencies.	

Objectives	

A	 CM	 system	 can	 control	 changes	 only	 to	 those	 items	 that	 have	 been	 placed	 under	 CM	 (i.e.	 the	
configuration	 items	 identified	 in	 the	 configuration	 list).	 Placing	 the	 TOE	 itself	 and	 the	 evaluation	
evidence	 required	 by	 the	 other	 SARs	 in	 the	 ST	 under	 CM	 provides	 assurance	 that	 they	 have	 been	
modified	in	a	controlled	manner	with	proper	authorisations.	

Application	notes	

ALC_CMS.1.1C	introduces	the	requirement	that	the	TOE	itself	and	the	evaluation	evidence	required	by	
the	 other	 SARs	 in	 the	 ST	 be	 included	 in	 the	 configuration	 list	 and	 hence	 be	 subject	 to	 the	 CM	
requirements	of	CM	capabilities	(ALC_CMC).	

Developer	action	elements	

ALC_CMS.1.1D	

The	developer	shall	provide	a	configuration	list	for	the	TOE.	

Content	and	presentation	elements	

ALC_CMS.1.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 95	
	

	

The	configuration	 list	 shall	 include	 the	 following:	 the	TOE	 itself;	and	 the	evaluation	evidence	
required	by	the	SARs.	

ALC_CMS.1.2C	

The	configuration	list	shall	uniquely	identify	the	configuration	items.	

Evaluator	action	elements	

ALC_CMS.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
12.3.5 ALC_CMS.2	Parts	of	the	TOE	CM	coverage	

Dependencies:	No	dependencies.	

Objectives	

A	 CM	 system	 can	 control	 changes	 only	 to	 those	 items	 that	 have	 been	 placed	 under	 CM	 (i.e.	 the	
configuration	items	identified	in	the	configuration	list).	Placing	the	TOE	itself,	the	parts	that	comprise	
the	TOE,	and	the	evaluation	evidence	required	by	the	other	SARs	under	CM	provides	assurance	that	
they	have	been	modified	in	a	controlled	manner	with	proper	authorisations.	

Application	notes	

ALC_CMS.2.1C	 introduces	 the	 requirement	 that	 the	 parts	 that	 comprise	 the	 TOE	 (all	 parts	 that	 are	
delivered	 to	 the	 consumer,	 for	 example	 hardware	 parts	 or	 executable	 files)	 be	 included	 in	 the	
configuration	list	and	hence	be	subject	to	the	CM	requirements	of	CM	capabilities	(ALC_CMC).	

ALC_CMS.2.3C	 introduces	 the	 requirement	 that	 the	 configuration	 list	 indicate	 the	 developer	 of	 each	
TSF	relevant	configuration	item.	

Developer	action	elements	

ALC_CMS.2.1D	

The	developer	shall	provide	a	configuration	list	for	the	TOE.	

Content	and	presentation	elements	

ALC_CMS.2.1C	

The	configuration	list	shall	 include	the	following:	the	TOE	itself;	the	evaluation	evidence	required	by	
the	SARs;	and	the	parts	that	comprise	the	TOE.	

ALC_CMS.2.2C	

The	configuration	list	shall	uniquely	identify	the	configuration	items.	

ALC_CMS.2.3C	

For	each	TSF	relevant	configuration	item,	the	configuration	list	shall	indicate	the	developer	of	
the	item.	

Evaluator	action	elements	

ALC_CMS.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
12.3.6 ALC_CMS.3	Implementation	representation	CM	coverage	

Dependencies:	 No	dependencies.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 96	
	

	

Objectives	

A	 CM	 system	 can	 control	 changes	 only	 to	 those	 items	 that	 have	 been	 placed	 under	 CM	 (i.e.	 the	
configuration	items	identified	in	the	configuration	list).	Placing	the	TOE	itself,	the	parts	that	comprise	
the	TOE,	 the	TOE	 implementation	representation	and	the	evaluation	evidence	required	by	 the	other	
SARs	under	CM	provides	assurance	that	they	have	been	modified	in	a	controlled	manner	with	proper	
authorisations.	

Application	notes	

ALC_CMS.3.1C	introduces	the	requirement	that	the	TOE	implementation	representation	be	included	in	
the	 list	 of	 configuration	 items	 and	 hence	 be	 subject	 to	 the	 CM	 requirements	 of	 CM	 capabilities	
(ALC_CMC).	

Developer	action	elements	

ALC_CMS.3.1D	

The	developer	shall	provide	a	configuration	list	for	the	TOE.	

Content	and	presentation	elements	

ALC_CMS.3.1C	

The	configuration	list	shall	 include	the	following:	the	TOE	itself;	the	evaluation	evidence	required	by	
the	SARs;	the	parts	that	comprise	the	TOE;	and	the	implementation	representation.	

ALC_CMS.3.2C	

The	configuration	list	shall	uniquely	identify	the	configuration	items.	

ALC_CMS.3.3C	

For	each	TSF	relevant	configuration	item,	the	configuration	list	shall	indicate	the	developer	of	the	item.	

Evaluator	action	elements	

ALC_CMS.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
12.3.7 ALC_CMS.4	Problem	tracking	CM	coverage	

Dependencies:	No	dependencies.	

Objectives	

A	 CM	 system	 can	 control	 changes	 only	 to	 those	 items	 that	 have	 been	 placed	 under	 CM	 (i.e.	 the	
configuration	items	identified	in	the	configuration	list).	Placing	the	TOE	itself,	the	parts	that	comprise	
the	TOE,	 the	TOE	 implementation	representation	and	the	evaluation	evidence	required	by	 the	other	
SARs	under	CM	provides	assurance	that	they	have	been	modified	in	a	controlled	manner	with	proper	
authorisations.	

Placing	security	flaw	reports	under	CM	ensures	that	the	integrity	of	the	reports	is	maintained	and	that	
access	 to	 them	 is	 managed,	 further,	 it	 may	 support	 developers	 in	 tracking	 security	 flaws	 to	 their	
resolution.	

Application	notes	

ALC_CMS.4.1C	introduces	the	requirement	that	reports	of	identified	security	flaws	be	included	in	the	
configuration	 list	 and	 hence	 be	 subject	 to	 the	 CM	 requirements	 of	 CM	 capabilities	 (ALC_CMC).	 This	
requires	that	information	regarding	previously	identified	security	flaw	reports	and	their	resolution	be	
maintained.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 97	
	

	

Developer	action	elements	

ALC_CMS.4.1D	

The	developer	shall	provide	a	configuration	list	for	the	TOE.	

Content	and	presentation	elements	

ALC_CMS.4.1C	

The	configuration	list	shall	 include	the	following:	the	TOE	itself;	the	evaluation	evidence	required	by	
the	 SARs;	 the	 parts	 that	 comprise	 the	 TOE;	 the	 implementation	 representation;	and	 security	 flaw	
reports	and	resolution	status.	

ALC_CMS.4.2C	

The	configuration	list	shall	uniquely	identify	the	configuration	items.	

ALC_CMS.4.3C	

For	each	TSF	relevant	configuration	item,	the	configuration	list	shall	indicate	the	developer	of	the	item.	

Evaluator	action	elements	

ALC_CMS.4.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
12.3.8 ALC_CMS.5	Development	tools	CM	coverage	

Dependencies:	 No	dependencies.	

Objectives	

A	 CM	 system	 can	 control	 changes	 only	 to	 those	 items	 that	 have	 been	 placed	 under	 CM	 (i.e.	 the	
configuration	items	identified	in	the	configuration	list).	Placing	the	TOE	itself,	the	parts	that	comprise	
the	TOE,	 the	TOE	 implementation	representation	and	the	evaluation	evidence	required	by	 the	other	
SARs	under	CM	provides	assurance	that	they	have	been	modified	in	a	controlled	manner	with	proper	
authorisations.	

Placing	security	flaw	reports	under	CM	ensures	that	the	integrity	of	the	reports	is	maintained	and	that	
access	 to	 them	 is	 managed,	 further,	 it	 may	 support	 developers	 in	 tracking	 security	 flaws	 to	 their	
resolution.	

Development	tools	play	an	important	role	in	ensuring	the	production	of	a	quality	version	of	the	TOE.	
Therefore,	it	is	important	to	control	modifications	to	these	tools.	

Application	notes	

ALC_CMS.5.1C	 introduces	 the	 requirement	 that	 development	 tools	 and	other	 related	 information	be	
included	 in	 the	 list	 of	 configuration	 items	 and	 hence	 be	 subject	 to	 the	 CM	 requirements	 of	 CM	
capabilities	 (ALC_CMC).	 Examples	 of	 development	 tools	 are	 programming	 languages	 and	 compilers.	
Information	 pertaining	 to	 TOE	 generation	 items	 (such	 as	 compiler	 options,	 generation	 options,	 and	
build	options)	is	an	example	of	information	relating	to	development	tools.	

Developer	action	elements	

ALC_CMS.5.1D	

The	developer	shall	provide	a	configuration	list	for	the	TOE.	

Content	and	presentation	elements	

ALC_CMS.5.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 98	
	

	

The	configuration	list	shall	 include	the	following:	the	TOE	itself;	the	evaluation	evidence	required	by	
the	SARs;	the	parts	that	comprise	the	TOE;	the	implementation	representation;	security	flaw	reports	
and	resolution	status;	and	development	tools	and	related	information.	

ALC_CMS.5.2C	

The	configuration	list	shall	uniquely	identify	the	configuration	items.	

ALC_CMS.5.3C	

For	each	TSF	relevant	configuration	item,	the	configuration	list	shall	indicate	the	developer	of	the	item.	

Evaluator	action	elements	

ALC_CMS.5.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

12.4 Delivery	(ALC_DEL)	

12.4.1 Objectives	

The	 concern	 of	 this	 family	 is	 the	 secure	 transfer	 of	 the	 finished	 TOE	 from	 the	 development	
environment	into	the	responsibility	of	the	user.	

The	requirements	 for	delivery	call	 for	system	control	and	distribution	 facilities	and	procedures	 that	
detail	 the	controls	necessary	to	provide	assurance	that	the	security	of	 the	TOE	is	maintained	during	
distribution	of	 the	TOE	 to	 the	user.	For	a	valid	distribution	of	 the	TOE,	 the	procedures	used	 for	 the	
distribution	of	the	TOE	address	the	implied	or	identified	objectives	identified	in	the	PP/ST	relating	to	
the	security	of	the	TOE	during	delivery.	
12.4.2 Component	levelling	

This	family	contains	only	one	component.	An	increasing	level	of	protection	for	the	TOE	is	established	
by	requiring	that	the	delivery	procedures	are	commensurate	with	the	assumed	attack	potential	in	the	
family	Vulnerability	analysis	(AVA_VAN)	specified	in	the	ST.	
12.4.3 Application	notes	

Transfers	 from	 subcontractors	 to	 the	 developer	 or	 between	 different	 development	 sites	 are	 not	
considered	here,	but	in	the	family	Developer	environment	security	(ALC_DVS).	

The	 end	 of	 the	 delivery	 phase	 is	 marked	 by	 the	 acceptance	 of	 the	 transfer	 of	 the	 TOE	 into	 the	
responsibility	of	the	downstream	user.	
NOTE:	 This	does	not	necessarily	coincide	with	the	arrival	of	the	TOE	at	the	downstream	user's	location.	

The	delivery	procedures	should	consider,	if	applicable,	issues	such	as:	

a)	 ensuring	that	the	TOE	received	by	the	consumer	corresponds	precisely	to	the	evaluated	version	of	
the	TOE;	

b)	 avoiding	or	detecting	any	tampering	with	the	actual	version	of	the	TOE;	

c)	 preventing	submission	of	a	counterfeit	version	of	the	TOE;	

d)	 avoiding	unwanted	knowledge	of	distribution	of	 the	TOE	to	 the	consumer:	 there	might	be	cases	
where	potential	attackers	should	not	know	when	and	how	it	is	delivered;	

e)	 avoiding	or	detecting	the	TOE	being	intercepted	during	delivery;	and	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 99	
	

	

f)	 avoiding	the	TOE	being	delayed	or	stopped	during	distribution.	

The	delivery	procedures	should	include	the	recipient's	actions	implied	by	these	issues.	The	consistent	
description	of	 these	 implied	actions	 is	examined	 in	 the	Preparative	procedures	(AGD_PRE)	 family,	 if	
present.	
12.4.4 ALC_DEL.1	Delivery	procedures	

Dependencies:	No	dependencies.	

Developer	action	elements	

ALC_DEL.1.1D	

The	developer	shall	document	and	provide	procedures	for	delivery	of	the	TOE	or	parts	of	it	to	
the	consumer.	

ALC_DEL.1.2D	

The	developer	shall	use	the	delivery	procedures.	

Content	and	presentation	elements	

ALC_DEL.1.1C	

The	 delivery	 documentation	 shall	 describe	 all	 procedures	 that	 are	 necessary	 to	 maintain	
security	when	distributing	versions	of	the	TOE	to	the	consumer.	

Evaluator	action	elements	

ALC_DEL.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

12.5 Developer	environment	security	(ALC_DVS)	

12.5.1 Objectives	

Development	 security	 is	 concerned	 with	 the	 determination	 and	 specification	 of	 security	 controls	
relating	to	the	developer	provided	environment.	
NOTE:	 Such	controls	 include	coverage	of	security	relevant	aspects	of	asset	management,	human	resources	
security,	 physical	 and	 environmental	 security,	 communications	 and	 operations	 management,	 access	 control,	
information	systems	acquisition,	development	and	maintenance,	information	security	incident	management,	and	
business	continuity	management.	

12.5.2 Component	levelling	

The	components	in	this	family	are	levelled	on	the	basis	of	whether	justification	of	the	sufficiency	of	the	
security	controls	is	required.	
12.5.3 Application	notes	

This	 family	 deals	 with	 controls	 to	 remove	 or	 reduce	 threads	 and	 security	 risks	 existing	 at	 the	
developer's	site.	

The	evaluator	should	visit	the	site(s)	in	order	to	assess	evidence	for	development	security.	This	may	
include	sites	of	subcontractors	involved	in	the	TOE	development	and	production.	Any	decision	not	to	
visit	shall	be	agreed	with	the	evaluation	authority.	

Although	 development	 security	 deals	 with	 the	 maintenance	 of	 the	 TOE	 and	 hence	 with	 aspects	
becoming	 relevant	 after	 the	 completion	 of	 the	 evaluation,	 the	 Developer	 environment	 security	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 100	
	

	

(ALC_DVS)	requirements	specify	only	that	the	development	security	controls	be	in	place	at	the	time	of	
evaluation.	 Furthermore,	 Developer	 environment	 security	 (ALC_DVS)	 does	 not	 contain	 any	
requirements	 related	 to	 the	 sponsor's	 intention	 to	 apply	 the	 development	 security	 controls	 in	 the	
future,	after	completion	of	the	evaluation.	

It	 is	 recognized	 that	 confidentiality	may	not	 always	be	 an	 issue	 for	 the	protection	of	 the	TOE	 in	 its	
development	 environment.	 The	 use	 of	 the	word	 “necessary”	 allows	 for	 the	 selection	 of	 appropriate	
safeguards.	
12.5.4 ALC_DVS.1	Identification	of	security	controls	

Dependencies:	No	dependencies.	

Developer	action	elements	

ALC_DVS.1.1D	

The	developer	shall	produce	and	provide	development	security	documentation.	

Content	and	presentation	elements	

ALC_DVS.1.1C	

The	 development	 security	 documentation	 shall	 describe	 all	 the	 physical,	 logical,	 procedural,	
personnel,	 and	 other	 security	 controls	 that	 are	 necessary	 to	 protect	 the	 confidentiality	 and	
integrity	of	the	TOE	design	and	implementation	in	its	development	environment.	

Evaluator	action	elements	

ALC_DVS.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ALC_DVS.1.2E	

The	evaluator	shall	confirm	that	the	security	controls	are	being	applied.	
12.5.5 ALC_DVS.2	Sufficiency	of	security	controls	

Dependencies:	No	dependencies.	

Developer	action	elements	

ALC_DVS.2.1D	

The	developer	shall	produce	and	provide	development	security	documentation.	

Content	and	presentation	elements	

ALC_DVS.2.1C	

The	development	 security	documentation	 shall	 describe	 all	 the	physical,	 procedural,	 personnel,	 and	
other	security	controls	that	are	necessary	to	protect	the	confidentiality	and	integrity	of	the	TOE	design	
and	implementation	in	its	development	environment.	

ALC_DVS.2.2C	

The	 development	 security	 documentation	 shall	 justify	 that	 the	 security	 controls	 provide	 the	
necessary	level	of	protection	to	maintain	the	confidentiality	and	integrity	of	the	TOE.	

Evaluator	action	elements	

ALC_DVS.2.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 101	
	

	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ALC_DVS.2.2E	

The	evaluator	shall	confirm	that	the	security	controls	are	being	applied.	

12.6 Flaw	remediation	(ALC_FLR)	

12.6.1 Objectives	

Flaw	remediation	requires	that	discovered	security	flaws	be	tracked	and	corrected	by	the	developer.	
Although	future	compliance	with	flaw	remediation	procedures	cannot	be	determined	at	the	time	of	the	
TOE	evaluation,	it	is	possible	to	evaluate	the	policies	and	procedures	that	a	developer	has	in	place	to	
track	and	correct	flaws,	and	to	distribute	the	flaw	information	and	corrections.	
12.6.2 Component	levelling	

The	components	 in	 this	 family	are	 levelled	on	the	basis	of	 the	 increasing	extent	 in	scope	of	 the	 flaw	
remediation	procedures	and	the	rigour	of	the	flaw	remediation	policies.	
12.6.3 Application	notes	

This	family	provides	assurance	that	the	TOE	will	be	maintained	and	supported	in	the	future,	requiring	
the	TOE	developer	to	track	and	correct	flaws	in	the	TOE.	Additionally,	requirements	are	included	for	
the	 distribution	 of	 flaw	 corrections.	However,	 this	 family	 does	 not	 impose	 evaluation	 requirements	
beyond	the	current	evaluation.	

The	 TOE	 user	 is	 considered	 to	 be	 the	 focal	 point	 in	 the	 user	 organization	 that	 is	 responsible	 for	
receiving	and	implementing	fixes	to	security	flaws.	This	is	not	necessarily	an	individual	user,	but	may	
be	an	organisational	representative	who	is	responsible	for	the	handling	of	security	flaws.	The	use	of	
the	term	TOE	user	recognizes	that	different	organisations	have	different	procedures	for	handling	flaw	
reporting,	which	may	be	done	either	by	an	individual	user,	or	by	a	central	administrative	body.	

The	 flaw	 remediation	 procedures	 should	 describe	 the	 methods	 for	 dealing	 with	 all	 types	 of	 flaws	
encountered.	These	flaws	may	be	reported	by	the	developer,	by	users	of	the	TOE,	or	by	other	parties	
with	 familiarity	with	 the	 TOE.	 Some	 flaws	may	 not	 be	 reparable	 immediately.	 There	may	 be	 some	
occasions	 where	 a	 flaw	 cannot	 be	 fixed	 and	 other	 (e.g.	 procedural)	 controls	 must	 be	 taken.	 The	
documentation	provided	 should	 cover	 the	procedures	 for	providing	 the	operational	 sites	with	 fixes,	
and	providing	information	on	flaws	where	fixes	are	delayed	(and	what	to	do	in	the	interim)	or	when	
fixes	are	not	possible.	

Changes	applied	to	a	TOE	after	its	release	render	it	unevaluated;	although	some	information	from	the	
original	evaluation	may	still	apply.	The	phrase	“release	of	the	TOE”	used	in	this	family	therefore	refers	
to	a	version	of	a	product	that	is	a	release	of	a	certified	TOE,	to	which	changes	have	been	applied.	
12.6.4 ALC_FLR.1	Basic	flaw	remediation	

Dependencies:	No	dependencies.	

Developer	action	elements	

ALC_FLR.1.1D	

The	 developer	 shall	 document	 and	 provide	 flaw	 remediation	 procedures	 addressed	 to	 TOE	
developers.	

Content	and	presentation	elements	

ALC_FLR.1.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 102	
	

	

The	flaw	remediation	procedures	documentation	shall	describe	the	procedures	used	to	 track	
all	reported	security	flaws	in	each	release	of	the	TOE.	

ALC_FLR.1.2C	

The	 flaw	 remediation	procedures	 shall	 require	 that	 a	 description	of	 the	nature	 and	 effect	 of	
each	security	flaw	be	provided,	as	well	as	the	status	of	finding	a	correction	to	that	flaw.	

ALC_FLR.1.3C	

The	flaw	remediation	procedures	shall	require	that	corrective	actions	be	identified	for	each	of	
the	security	flaws.	

ALC_FLR.1.4C	

The	 flaw	remediation	procedures	documentation	shall	describe	 the	methods	used	 to	provide	
flaw	information,	corrections	and	guidance	on	corrective	actions	to	TOE	users.	

Evaluator	action	elements	

ALC_FLR.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
12.6.5 ALC_FLR.2	Flaw	reporting	procedures	

Dependencies:	No	dependencies.	

Objectives	

In	order	for	the	developer	to	be	able	to	act	appropriately	upon	security	flaw	reports	from	TOE	users,	
and	to	know	to	whom	to	send	corrective	fixes,	TOE	users	need	to	understand	how	to	submit	security	
flaw	reports	to	the	developer.	Flaw	remediation	guidance	from	the	developer	to	the	TOE	user	ensures	
that	TOE	users	are	aware	of	this	important	information.	

Developer	action	elements	

ALC_FLR.2.1D	

The	developer	shall	document	and	provide	flaw	remediation	procedures	addressed	to	TOE	developers.	

ALC_FLR.2.2D	

The	developer	shall	establish	a	procedure	for	accepting	and	acting	upon	all	reports	of	security	
flaws	and	requests	for	corrections	to	those	flaws.	

ALC_FLR.2.3D	

The	developer	shall	provide	flaw	remediation	guidance	addressed	to	TOE	users.	

Content	and	presentation	elements	

ALC_FLR.2.1C	

The	 flaw	 remediation	 procedures	 documentation	 shall	 describe	 the	 procedures	 used	 to	 track	 all	
reported	security	flaws	in	each	release	of	the	TOE.	

ALC_FLR.2.2C	

The	 flaw	 remediation	 procedures	 shall	 require	 that	 a	 description	 of	 the	 nature	 and	 effect	 of	 each	
security	flaw	be	provided,	as	well	as	the	status	of	finding	a	correction	to	that	flaw.	

ALC_FLR.2.3C	

The	 flaw	 remediation	 procedures	 shall	 require	 that	 corrective	 actions	 be	 identified	 for	 each	 of	 the	
security	flaws.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 103	
	

	

ALC_FLR.2.4C	

The	 flaw	 remediation	 procedures	 documentation	 shall	 describe	 the	 methods	 used	 to	 provide	 flaw	
information,	corrections	and	guidance	on	corrective	actions	to	TOE	users.	

ALC_FLR.2.5C	

The	flaw	remediation	procedures	shall	describe	a	means	by	which	the	developer	receives	from	
TOE	users	reports	and	enquiries	of	suspected	security	flaws	in	the	TOE.	

ALC_FLR.2.6C	

The	procedures	for	processing	reported	security	flaws	shall	ensure	that	any	reported	flaws	are	
remediated	and	the	remediation	procedures	issued	to	TOE	users.	

ALC_FLR.2.7C	

The	 procedures	 for	 processing	 reported	 security	 flaws	 shall	 provide	 safeguards	 that	 any	
corrections	to	these	security	flaws	do	not	introduce	any	new	flaws.	

ALC_FLR.2.8C	

The	 flaw	 remediation	 guidance	 shall	 describe	 a	 means	 by	 which	 TOE	 users	 report	 to	 the	
developer	any	suspected	security	flaws	in	the	TOE.	

Evaluator	action	elements	

ALC_FLR.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
12.6.6 ALC_FLR.3	Systematic	flaw	remediation	

Dependencies:	No	dependencies.	

Objectives	

In	order	for	the	developer	to	be	able	to	act	appropriately	upon	security	flaw	reports	from	TOE	users,	
and	to	know	to	whom	to	send	corrective	fixes,	TOE	users	need	to	understand	how	to	submit	security	
flaw	 reports	 to	 the	developer,	 and	how	 to	 register	 themselves	with	 the	developer	 so	 that	 they	may	
receive	these	corrective	fixes.	Flaw	remediation	guidance	from	the	developer	to	the	TOE	user	ensures	
that	TOE	users	are	aware	of	this	important	information.	

Developer	action	elements	

ALC_FLR.3.1D	

The	developer	shall	document	and	provide	flaw	remediation	procedures	addressed	to	TOE	developers.	

ALC_FLR.3.2D	

The	developer	shall	establish	a	procedure	for	accepting	and	acting	upon	all	reports	of	security	flaws	
and	requests	for	corrections	to	those	flaws.	

ALC_FLR.3.3D	

The	developer	shall	provide	flaw	remediation	guidance	addressed	to	TOE	users.	

Content	and	presentation	elements	

ALC_FLR.3.1C	

The	 flaw	 remediation	 procedures	 documentation	 shall	 describe	 the	 procedures	 used	 to	 track	 all	
reported	security	flaws	in	each	release	of	the	TOE.	

ALC_FLR.3.2C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 104	
	

	

The	 flaw	 remediation	 procedures	 shall	 require	 that	 a	 description	 of	 the	 nature	 and	 effect	 of	 each	
security	flaw	be	provided,	as	well	as	the	status	of	finding	a	correction	to	that	flaw.	

ALC_FLR.3.3C	

The	 flaw	 remediation	 procedures	 shall	 require	 that	 corrective	 actions	 be	 identified	 for	 each	 of	 the	
security	flaws.	

ALC_FLR.3.4C	

The	 flaw	 remediation	 procedures	 documentation	 shall	 describe	 the	 methods	 used	 to	 provide	 flaw	
information,	corrections	and	guidance	on	corrective	actions	to	TOE	users.	

ALC_FLR.3.5C	

The	 flaw	remediation	procedures	shall	describe	a	means	by	which	the	developer	receives	 from	TOE	
users	reports	and	enquiries	of	suspected	security	flaws	in	the	TOE.	

ALC_FLR.3.6C	

The	flaw	remediation	procedures	shall	include	a	procedure	requiring	timely	response	and	the	
automatic	 distribution	 of	 security	 flaw	 reports	 and	 the	 associated	 corrections	 to	 registered	
users	who	might	be	affected	by	the	security	flaw.	

ALC_FLR.3.7C	

The	 procedures	 for	 processing	 reported	 security	 flaws	 shall	 ensure	 that	 any	 reported	 flaws	 are	
remediated	and	the	remediation	procedures	issued	to	TOE	users.	

ALC_FLR.3.8C	

The	procedures	for	processing	reported	security	flaws	shall	provide	safeguards	that	any	corrections	to	
these	security	flaws	do	not	introduce	any	new	flaws.	

ALC_FLR.3.9C	

The	flaw	remediation	guidance	shall	describe	a	means	by	which	TOE	users	report	to	the	developer	any	
suspected	security	flaws	in	the	TOE.	

ALC_FLR.3.10C	

The	flaw	remediation	guidance	shall	describe	a	means	by	which	TOE	users	may	register	with	
the	developer,	to	be	eligible	to	receive	security	flaw	reports	and	corrections.	

ALC_FLR.3.11C	

The	flaw	remediation	guidance	shall	 identify	 the	specific	points	of	contact	 for	all	reports	and	
enquiries	about	security	issues	involving	the	TOE.	

Evaluator	action	elements	

ALC_FLR.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

12.7 Development	Life-cycle	definition	(ALC_LCD)	

12.7.1 Objectives	

Poorly	 defined	 or	 uncontrolled	 processes	 applied	 during	 the	 development,	 production	 and	
maintenance	of	the	TOE	can	result	in	a	TOE	that	does	not	meet	all	of	its	security	objectives.	Therefore,	
it	 is	 important	 that	well	 defined	and	 controlled	processes	be	 established	as	 early	 as	possible	 in	 the	
TOE's	life-cycle.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 105	
	

	

Defining	and	implementing	such	processes	does	not	guarantee	that	the	TOE	meets	all	of	its	SFRs.	It	is	
possible	that	the	processes	will	be	insufficient	or	inadequate.	

Adopting	 a	 life-cycle	 model,	 or	 models	 that	 meets	 the	 needs	 of	 the	 developer’s	 organization	 will	
improve	the	likelihood	that	the	development,	production	and	maintenance	processes	applied	to	TOE	
support	the	correct	design	and	implementation	of	a	TOE	that	meets	the	specified	SFRs.	

The	determination	of	appropriate	process	controls	in	order	to	support	process	improvement	is	a	long	
established	best	practice.	
12.7.2 Component	levelling	

The	components	in	this	family	are	levelled	on	the	basis	of	increasing	requirements	for	measurability	of	
the	life-cycle	model,	and	for	compliance	with	that	model.	
12.7.3 Application	notes	

A	life-cycle	model	encompasses	the	procedures,	tools	and	techniques	used	to	develop	and	maintain	the	
TOE.	 Aspects	 of	 the	 process	 that	may	 be	 covered	 by	 such	 a	model	 include	 design	methods,	 review	
procedures,	 project	management	 controls,	 change	 control	 procedures,	 test	methods	 and	 acceptance	
procedures.	 An	 effective	 life-cycle	 model	 will	 address	 these	 aspects	 of	 the	 development	 and	
maintenance	 process	 within	 an	 overall	 management	 structure	 that	 assigns	 responsibilities	 and	
monitors	progress.	

There	 are	 different	 types	 of	 acceptance	 situations	 that	 are	 dealt	 with	 at	 different	 locations	 in	 the	
criteria:	

—	 acceptance	of	parts	delivered	by	subcontractors	(“integration”)	should	be	treated	in	this	family	

—	 Life-cycle	definition	(ALC_LCD),	

—	 acceptance	subsequent	to	internal	transportations	in	Development	security	(ALC_DVS),	

—	 acceptance	of	parts	into	the	CM	system	in	CM	capabilities	(ALC_CMC),	and	

—	 acceptance	of	the	delivered	TOE	by	the	consumer	in	Delivery	(ALC_DEL).	

The	first	three	types	may	overlap.	

Although	life-cycle	definition	deals	with	the	maintenance	of	the	TOE	and	hence	with	aspects	becoming	
relevant	after	 the	completion	of	 the	evaluation,	 its	evaluation	adds	assurance	through	an	analysis	of	
the	life-cycle	information	for	the	TOE	provided	at	the	time	of	the	evaluation.	

A	 life-cycle	model	provides	 for	 the	necessary	control	over	 the	development	and	maintenance	of	 the	
TOE,	if	the	model	enables	sufficient	minimization	of	the	danger	that	the	TOE	will	not	meet	its	security	
requirement.	

A	measurable	 life-cycle	model	 is	 a	model	 using	 some	quantitative	 valuation	 (arithmetic	 parameters	
and/or	metrics)	of	the	managed	product	in	order	to	measure	development	properties	of	the	product.	
Typical	metrics	are	source	code	complexity	metrics,	defect	density	(errors	per	size	of	code)	or	mean	
time	 to	 failure.	 For	 the	 security	 evaluation	 all	 those	 metrics	 are	 of	 relevance,	 which	 are	 used	 to	
increase	quality	by	decreasing	the	probability	of	faults	and	thereby	in	turn	increasing	assurance	in	the	
security	of	the	TOE.	

One	should	take	into	account	that	there	exist	standardised	life-cycle	models	on	the	one	hand	(like	the	
waterfall	 model)	 and	 standardised	 metrics	 on	 the	 other	 hand	 (like	 error	 density),	 which	 may	 be	
combined.	 The	 ISO/IEC	 15408	 series	 does	 not	 require	 the	 life-cycle	 to	 follow	 exactly	 one	 standard	
defining	both	aspects.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 106	
	

	

12.7.4 ALC_LCD.1	Developer	defined	life-cycle	processes	

Dependencies:	No	dependencies.	

Developer	action	elements	

ALC_LCD.1.1D	

The	 developer	 shall	 establish	 a	 life-cycle	 model	 to	 be	 used	 in	 the	 development	 and	
maintenance	of	the	TOE.	

ALC_LCD.1.2D	

The	developer	shall	provide	life-cycle	definition	documentation.	

Content	and	presentation	elements	

ALC_LCD.1.1C	

The	 life-cycle	 definition	 documentation	 shall	 describe	 the	 processes	 used	 to	 develop	 and	
maintain	the	TOE.	

ALC_LCD.1.2C	

The	 life-cycle	 model	 shall	 provide	 for	 the	 necessary	 control	 over	 the	 development	 and	
maintenance	of	the	TOE.	

Evaluator	action	elements	

ALC_LCD.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
12.7.5 ALC_LCD.2	Measurable	life-cycle	model	

Dependencies:	No	dependencies.	

Developer	action	elements	

ALC_LCD.2.1D	

The	developer	shall	establish	a	life-cycle	model	to	be	used	in	the	development	and	maintenance	of	the	
TOE	that	is	based	on	a	measurable	life-cycle	model.	

ALC_LCD.2.2D	

The	developer	shall	provide	life-cycle	definition	documentation.	

ALC_LCD.2.3D	

The	developer	shall	measure	the	TOE	development	using	the	measurable	life-cycle	model..	

ALC_LCD.2.4D	

The	developer	shall	provide	life-cycle	output	documentation.	

Content	and	presentation	elements	

ALC_LCD.2.1C	

The	life-cycle	definition	documentation	shall	describe	the	model	used	to	develop	and	maintain	the	TOE	
including	the	details	of	its	arithmetic	parameters	and/or	metrics	used	to	measure	the	quality	of	
the	TOE	and/or	its	development.	

ALC_LCD.2.2C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 107	
	

	

The	life-cycle	model	shall	provide	for	the	necessary	control	over	the	development	and	maintenance	of	
the	TOE.	

ALC_LCD.2.3C	

The	life-cycle	output	documentation	shall	provide	the	results	of	the	measurements	of	the	TOE	
development	using	the	measurable	life-cycle	model.	

Evaluator	action	elements	

ALC_LCD.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ALC_LCD.2.2E	

The	 evaluator	 shall	 confirm	 that	 the	 measurements	 of	 the	 TOE	 development	 processes	 and	
security	relevant	properties	of	 the	TOE	support	 improvements	 in	 the	development	processes	
and/or	the	TOE	itself.	
12.8 TOE	Development	Artefacts	(ALC_TDA)	

12.8.1 Objectives	

This	 family	 aims	 to	 add	 trust	 to	 the	 development	 process	 or	 a	 development.	 It	 focuses	 on	 the	
generation	of	certain	artefacts	in	the	development	process.	These	artefacts	are	used	at	a	later	point	in	
time	to	assess	the	degree	to	which	the	development	process	is	trustable.	This	trust	is	realized	through	
the	 validation	 of	 the	 generated	 artefacts	 for	 confirming	 them	 as	 sufficient	 evidence	 for	 trustable	
development.	

This	family	introduces	developer	practices	within	the	development	process	to	generate	the	required	
artefacts	for	realizing	trustable	development.	If	a	requirement	in	this	family	does	not	explicitly	specify	
the	 use	 of	 automation	 to	 generate	 the	 required	 artefacts,	 the	 developer	 is	 free	 to	 undertake	 the	
corresponding	practice	manually,	or	to	use	some	integrated	automation	in	the	development	process,	
or	to	use	a	hybrid	method	of	both.	It	is	expected	that	the	degree	of	trust	in	the	development	process	is	
proportional	 to	 the	 degree	 of	 automation	 adoption	 to	 implement	 the	 corresponding	 practice	 in	 the	
development	process.	

This	 family	 also	 has	 a	 relationship	with	 the	 ALC_TAT	 family.	 As	 ALC_TAT	 focuses	 on	 the	 tools	 and	
techniques	 aspect	 for	 developing,	 analysing,	 and	 implementing	 the	 TOE,	 it	 provides	 the	 necessary	
context	when	describing	the	practices	of	this	family	being	introduced	into	the	development	process.	
12.8.2 Component	levelling	

The	components	 in	 this	 family	are	 levelled	on	 the	basis	of	 increasing	cross-checking	 for	consistency	
with	relevant	evidence	from	components	of	other	families	of	other	security	assurance	classes.	
12.8.3 Application	notes	

The	requirements	in	ALC_TDA.1	provide	a	degree	of	trust	in	the	developer’s	ability	to	identify	the	set	
of	implementation	representation	which	actually	has	been	used	during	the	TOE	generation	time.	This	
degree	of	trust	helps	to	positively	answer	the	question	“is	that	really	the	source	code	for	this	software”	
or	 “is	 that	 really	 the	 register-transfer	 level	 (RTL)	 design	 or	 description	 for	 this	 integrated	 circuit	
hardware””	 or	 “is	 that	 really	 the	 set	 of	 implementation	 representation	 for	 this	 TOE”,	 which	 is	
potentially	relevant	in	an	evaluation.	Such	degree	of	trust	is	built	on	

a)	 the	timing	of	when	the	set	of	implementation	representation	identifiers	is	recorded	or	logged,	

b)	 the	integrity	and	authenticity	of	the	record	of	implementation	representation	identifiers,	and	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 108	
	

	

c)	 the	traceability	of	implementation	representation	identifiers	from	the	TOE.	

In	the	case	where	some	implementation	representation	elements	are	also	covered	in	the	configuration	
list	 due	 to	 ALC_CMS.3,	 the	 requirements	 in	 ALC_TDA.2	 make	 sure	 that	 these	 implementation	
representation	 elements	 actually	 are	 identifiable	 through	 the	 use	 of	 the	 implementation	
representation	identifiers	of	ALC_TDA.1.	

With	the	accurate	recording	or	logging	of	the	actual	implementation	representation	being	used	by	the	
development	tools	under	the	scope	of	ALC_TAT,	it	provides	an	additional	evidence	to	convince	a	third	
party	that	a	regeneration	of	the	TOE	is	functionally	equivalent	to	the	original	TOE.	

The	 requirements	 in	 ALC_TDA.3	 provide	 the	 developer	 an	 opportunity	 to	 testify	 the	 absence	 of	
functional	differences	between	the	two	possibly	visibly	different	TOEs	which	have	been	independently	
generated	from	the	identical	set	of	implementation	representation.	
12.8.4 ALC_TDA.1	Uniquely	identifying	implementation	representation	

Dependencies:	No	dependencies.	

Developer	action	elements	

ALC_TDA.1.1D	

The	developer	shall	identify	individual	elements	of	the	TOE	implementation	representation	to	
record	 the	 list	of	unique	TOE	 implementation	representation	 identifiers,	 as	 the	development	
tool	generates	the	TOE.	

ALC_TDA.1.2D	

The	 developer	 shall	 use	 the	 current	 date	 and	 time	 to	 timestamp	 the	 list	 of	 unique	 TOE	
implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.1.3D	

The	 developer	 shall	 maintain	 the	 integrity	 of	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.1.4D	

The	 developer	 shall	 ensure	 the	 authenticity	 of	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time,	with	the	maintenance	
of	the	(author)	origination	information.	

ALC_TDA.1.5D	

The	developer	 shall	 be	 able	 to	 trace	 from	 the	TOE	 to	 the	 list	 of	 unique	TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.1.6D	

The	developer	shall	produce	and	provide	documentation	describing	

a)	 the	 developer’s	 creation	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	as	recorded	during	the	TOE	generation	time;	

b)	 the	 developer’s	 timestamp	 being	 applied	 to	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time;	

c)	 the	 maintenance	 of	 the	 (author)	 origination	 information	 of	 the	 list	 of	 unique	 TOE	
implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time;	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 109	
	

	

d)	 the	maintenance	of	 the	 integrity	of	 the	 list	of	unique	TOE	implementation	representation	
identifiers	as	recorded	during	the	TOE	generation	time	and	its	associated	timestamp	and	
(author)	origination	information;	

e)	 the	developer’s	mechanism	to	trace	from	the	TOE	to	the	list	of	unique	TOE	implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

Content	and	presentation	elements	

ALC_TDA.1.1C	

The	list	of	unique	TOE	implementation	representation	identifiers	as	recorded	during	the	TOE	
generation	 time	 shall	 demonstrate	 the	 correspondence	 between	 the	 TOE	 implementation	
representation	 element	 identifiers	 and	 the	 TOE	 implementation	 representation	 element	
names.	

ALC_TDA.1.2C	

The	TOE	implementation	representation	element	names	shall	be	in	the	same	form	as	used	or	
referenced	by	the	development	tool	to	generate	the	TOE.	

ALC_TDA.1.3C	

The	timestamp	of	the	list	of	unique	TOE	implementation	representation	identifiers	as	recorded	
during	the	TOE	generation	time	shall	be	consistent	with	the	creation	time	of	the	TOE.	

ALC_TDA.1.4C	

The	(author)	origination	information	of	the	list	of	unique	TOE	implementation	representation	
identifiers	as	 recorded	during	 the	TOE	generation	 time	 shall	be	 consistent	with	 the	 (author)	
origination	information	of	the	TOE.	The	author	origination	information	may	be	the	name	of	an	
affiliate	of	an	organization.	

Evaluator	action	elements	

ALC_TDA.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ALC_TDA.1.2E	

The	evaluator	shall	confirm	that	the	development	tool	for	generating	the	TOE	is	capable	to	use	
or	reference	the	implementation	representation	element	names.	

ALC_TDA.1.3E	

The	 evaluator	 shall	 confirm	 that	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	as	recorded	during	the	TOE	generation	time	is	consistent	with	the	creation	time	of	
the	TOE.	

ALC_TDA.1.4E	

The	evaluator	shall	confirm	that	the	(author)	origination	information	of	the	list	of	unique	TOE	
implementation	 representation	 identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time	 is	
consistent	with	the	(author)	origination	information	of	the	TOE.	

ALC_TDA.1.5E	

The	evaluator	shall	check	the	integrity	of	the	list	of	unique	TOE	implementation	representation	
identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time	 and	 its	 associated	 timestamp	 and	
(author)	origination	information.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 110	
	

	

ALC_TDA.1.6E	

The	evaluator	shall	confirm	the	developer’s	ability	to	trace	from	the	TOE	to	the	list	of	unique	
TOE	implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time.	
12.8.5 ALC_TDA.2	Matching	CMS	scope	of	implementation	representation	

Dependencies:	ALC_CMS.3	Implementation	representation	CM	coverage	

Developer	action	elements	

ALC_TDA.2.1D	

The	developer	shall	identify	individual	elements	of	the	TOE	implementation	representation	to	record	
the	 list	of	unique	TOE	 implementation	representation	 identifiers,	as	 the	development	 tool	generates	
the	TOE.	

ALC_TDA.2.2D	

The	developer	shall	use	the	current	date	and	time	to	timestamp	the	list	of	unique	TOE	implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.2.3D	

The	developer	 shall	maintain	 the	 integrity	 of	 the	 list	 of	 unique	TOE	 implementation	 representation	
identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.2.4D	

The	developer	shall	ensure	the	authenticity	of	the	list	of	unique	TOE	implementation	representation	
identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time,	 with	 the	 maintenance	 of	 the	 (author)	
origination	information.	

ALC_TDA.2.5D	

The	 developer	 shall	 be	 able	 to	 trace	 from	 the	 TOE	 to	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.2.6D	

The	developer	shall	produce	and	provide	documentation	describing	

a)	 the	 developer’s	 creation	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	 identifiers	 as	
recorded	during	the	TOE	generation	time;	

b)	 the	developer’s	timestamp	being	applied	to	the	list	of	unique	TOE	implementation	representation	
identifiers	as	recorded	during	the	TOE	generation	time;	

c)	 the	maintenance	of	the	(author)	origination	information	of	the	list	of	unique	TOE	implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time;	

d)	 the	 maintenance	 of	 the	 integrity	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	as	recorded	during	the	TOE	generation	time	and	its	associated	timestamp	and	(author)	
origination	information;	

e)	 the	 developer’s	 mechanism	 to	 trace	 from	 the	 TOE	 to	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.2.7D	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 111	
	

	

The	 developer	 shall	 provide	 evidence	 that	 the	 elements	 of	 implementation	 representation	
under	 the	 configuration	 scope	 of	 ALC_CMS.3	 are	 identified	 by	 the	 list	 of	 unique	 TOE	
implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time.	

Content	and	presentation	elements	

ALC_TDA.2.1C	

The	 list	 of	 unique	 TOE	 implementation	 representation	 identifiers	 as	 recorded	 during	 the	 TOE	
generation	 time	 shall	 demonstrate	 the	 correspondence	 between	 the	 TOE	 implementation	
representation	element	identifiers	and	the	TOE	implementation	representation	element	names.	

ALC_TDA.2.2C	

The	 TOE	 implementation	 representation	 element	 names	 shall	 be	 in	 the	 same	 form	 as	 used	 or	
referenced	by	the	development	tool	to	generate	the	TOE.	

ALC_TDA.2.3C	

The	timestamp	of	the	list	of	unique	TOE	implementation	representation	identifiers	as	recorded	during	
the	TOE	generation	time	shall	be	consistent	with	the	creation	time	of	the	TOE.	

ALC_TDA.2.4C	

The	 (author)	 origination	 information	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time	 shall	 be	 consistent	 with	 the	 (author)	
origination	information	of	the	TOE.	The	author	origination	information	may	be	the	name	of	an	affiliate	
of	an	organization.	

ALC_TDA.2.5C	

The	 list	 of	 identifiers	 of	 the	 elements	 of	 implementation	 representation	 under	 the	
configuration	 scope	 of	 ALC_CMS.3	 shall	 match	 with	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

Evaluator	action	elements	

ALC_TDA.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ALC_TDA.2.2E	

The	 evaluator	 shall	 confirm	 that	 the	 development	 tool	 for	 generating	 the	 TOE	 is	 capable	 to	 use	 or	
reference	the	implementation	representation	element	names.	

ALC_TDA.2.3E	

The	evaluator	shall	confirm	that	 the	 list	of	unique	TOE	implementation	representation	 identifiers	as	
recorded	during	the	TOE	generation	time	is	consistent	with	the	creation	time	of	the	TOE.	

ALC_TDA.2.4E	

The	 evaluator	 shall	 confirm	 that	 the	 (author)	 origination	 information	 of	 the	 list	 of	 unique	 TOE	
implementation	representation	 identifiers	as	 recorded	during	 the	TOE	generation	 time	 is	 consistent	
with	the	(author)	origination	information	of	the	TOE.	

ALC_TDA.2.5E	

The	 evaluator	 shall	 check	 the	 integrity	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time	 and	 its	 associated	 timestamp	 and	 (author)	
origination	information.	

ALC_TDA.2.6E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 112	
	

	

The	 evaluator	 shall	 confirm	 the	 developer’s	 ability	 to	 trace	 from	 the	 TOE	 to	 the	 list	 of	 unique	 TOE	
implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.2.7E	

The	 evaluator	 shall	 confirm	 that	 the	 list	 of	 identifiers	 of	 the	 elements	 of	 implementation	
representation	under	the	configuration	scope	of	ALC_CMS.3	matches	with	the	list	of	unique	TOE	
implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time.	
12.8.6 ALC_TDA.3	Regenerate	TOE	with	well-defined	development	tools	

Dependencies:	 ALC_CMS.3	Implementation	representation	CM	coverage	

	 ALC_TAT.1	Well-defined	development	tools	and	

	 ADV_IMP.1	Implementation	representation	of	the	TSF	
Developer	action	elements	

ALC_TDA.3.1D	

The	developer	shall	identify	individual	elements	of	the	TOE	implementation	representation	to	record	
the	 list	of	unique	TOE	 implementation	representation	 identifiers,	as	 the	development	 tool	generates	
the	TOE.	

ALC_TDA.3.2D	

The	developer	shall	use	the	current	date	and	time	to	timestamp	the	list	of	unique	TOE	implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.3.3D	

The	developer	 shall	maintain	 the	 integrity	 of	 the	 list	 of	 unique	TOE	 implementation	 representation	
identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.3.4D	

The	developer	shall	ensure	the	authenticity	of	the	list	of	unique	TOE	implementation	representation	
identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time,	 with	 the	 maintenance	 of	 the	 (author)	
origination	information.	

ALC_TDA.3.5D	

The	 developer	 shall	 be	 able	 to	 trace	 from	 the	 TOE	 to	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.3.6D	

The	developer	shall	produce	and	provide	documentation	describing	

a)	 the	 developer’s	 creation	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	 identifiers	 as	
recorded	during	the	TOE	generation	time;	

b)	 the	developer’s	timestamp	being	applied	to	the	list	of	unique	TOE	implementation	representation	
identifiers	as	recorded	during	the	TOE	generation	time;	

c)	 the	maintenance	of	the	(author)	origination	information	of	the	list	of	unique	TOE	implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time;	

d)	 the	 maintenance	 of	 the	 integrity	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	as	recorded	during	the	TOE	generation	time	and	its	associated	timestamp	and	(author)	
origination	information;	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 113	
	

	

e)	 the	 developer’s	 mechanism	 to	 trace	 from	 the	 TOE	 to	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.3.7D	

The	developer	shall	provide	evidence	that	the	elements	of	 implementation	representation	under	the	
configuration	 scope	 of	 ALC_CMS.3	 are	 identified	 by	 the	 list	 of	 unique	 TOE	 implementation	
representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.3.8D	

After	 applying	 the	 development	 tools	 to	 another	 copy	 of	 the	 TOE	 implementation	
representation	according	to	the	 list	of	unique	TOE	implementation	representation	 identifiers	
to	regenerate	a	TOE	copy,	the	developer	shall	explain	the	functional	differences,	if	any,	between	
the	TOE	copy	and	the	original	TOE.	

ALC_TDA.3.9D	

The	developer	shall	produce	and	provide	documentation	explaining	the	functional	differences,	
if	any,	between	the	regenerated	TOE	copy	and	the	original	TOE.	

Content	and	presentation	elements	

ALC_TDA.3.1C	

The	 list	 of	 unique	 TOE	 implementation	 representation	 identifiers	 as	 recorded	 during	 the	 TOE	
generation	 time	 shall	 demonstrate	 the	 correspondence	 between	 the	 TOE	 implementation	
representation	element	identifiers	and	the	TOE	implementation	representation	element	names.	

ALC_TDA.3.2C	

The	 TOE	 implementation	 representation	 element	 names	 shall	 be	 in	 the	 same	 form	 as	 used	 or	
referenced	by	the	development	tool	to	generate	the	TOE.	

ALC_TDA.3.3C	

The	timestamp	of	the	list	of	unique	TOE	implementation	representation	identifiers	as	recorded	during	
the	TOE	generation	time	shall	be	consistent	with	the	creation	time	of	the	TOE.	

ALC_TDA.3.4C	

The	 (author)	 origination	 information	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time	 shall	 be	 consistent	 with	 the	 (author)	
origination	information	of	the	TOE.	The	author	origination	information	may	be	the	name	of	an	affiliate	
of	an	organization.	

ALC_TDA.3.5C	

The	list	of	identifiers	of	the	elements	of	implementation	representation	under	the	configuration	scope	
of	 ALC_CMS.3	 shall	match	with	 the	 list	 of	 unique	 TOE	 implementation	 representation	 identifiers	 as	
recorded	during	the	TOE	generation	time.	

ALC_TDA.3.6C	

The	developer’s	explanation	of	the	functional	differences,	if	any,	between	the	regenerated	TOE	
copy	 and	 the	 original	 TOE	 shall	 take	 into	 account	 all	 visible	 differences,	 if	 any,	 between	 the	
regenerated	TOE	copy	and	the	original	TOE	

Evaluator	action	elements	

ALC_TDA.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 114	
	

	

ALC_TDA.3.2E	

The	 evaluator	 shall	 confirm	 that	 the	 development	 tool	 for	 generating	 the	 TOE	 is	 capable	 to	 use	 or	
reference	the	implementation	representation	element	names.	

ALC_TDA.3.3E	

The	evaluator	shall	confirm	that	 the	 list	of	unique	TOE	implementation	representation	 identifiers	as	
recorded	during	the	TOE	generation	time	is	consistent	with	the	creation	time	of	the	TOE.	

ALC_TDA.3.4E	

The	 evaluator	 shall	 confirm	 that	 the	 (author)	 origination	 information	 of	 the	 list	 of	 unique	 TOE	
implementation	representation	 identifiers	as	 recorded	during	 the	TOE	generation	 time	 is	 consistent	
with	the	(author)	origination	information	of	the	TOE.	

ALC_TDA.3.5E	

The	 evaluator	 shall	 check	 the	 integrity	 of	 the	 list	 of	 unique	 TOE	 implementation	 representation	
identifiers	 as	 recorded	 during	 the	 TOE	 generation	 time	 and	 its	 associated	 timestamp	 and	 (author)	
origination	information.	

ALC_TDA.3.6E	

The	 evaluator	 shall	 confirm	 the	 developer’s	 ability	 to	 trace	 from	 the	 TOE	 to	 the	 list	 of	 unique	TOE	
implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.3.7E	

The	 evaluator	 shall	 confirm	 that	 the	 list	 of	 identifiers	 of	 the	 elements	 of	 implementation	
representation	 under	 the	 configuration	 scope	 of	 ALC_CMS.3	 matches	 with	 the	 list	 of	 unique	 TOE	
implementation	representation	identifiers	as	recorded	during	the	TOE	generation	time.	

ALC_TDA.3.8E	

The	evaluator	shall	check	that	the	developer’s	explanation	of	the	functional	differences,	if	any,	
between	 the	 regenerated	 TOE	 copy	 and	 the	 original	 TOE	 takes	 into	 account	 all	 visible	
differences,	if	any,	between	the	regenerated	TOE	copy	and	the	original	TOE.	

12.9 Tools	and	techniques	(ALC_TAT)	

12.9.1 Objectives	

Tools	and	techniques	is	an	aspect	of	selecting	tools	that	are	used	to	develop,	analyse	and	implement	
the	TOE.	It	 includes	requirements	to	prevent	 ill-defined,	 inconsistent	or	 incorrect	development	tools	
from	 being	 used	 to	 develop	 the	 TOE.	 This	 includes,	 but	 is	 not	 limited	 to,	 programming	 languages,	
documentation,	 implementation	 standards,	 and	 other	 parts	 of	 the	 TOE	 such	 as	 supporting	 runtime	
libraries.	
12.9.2 Component	levelling	

The	components	in	this	family	are	levelled	on	the	basis	of	increasing	requirements	on	the	description	
and	 scope	 of	 the	 implementation	 standards	 and	 the	 documentation	 of	 implementation-dependent	
options.	
12.9.3 Application	notes	

There	 is	 a	 requirement	 for	 well-defined	 development	 tools.	 These	 are	 tools	 that	 are	 clearly	 and	
completely	 described.	 For	 example,	 programming	 languages	 and	 computer	 aided	 design	 (CAD)	
systems	that	are	based	on	a	standard	published	by	standards	bodies	are	considered	to	be	well-defined.	
Self-made	tools	would	need	further	investigation	to	clarify	whether	they	are	well-defined.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 115	
	

	

The	requirement	in	ALC_TAT.1.2C	is	especially	applicable	to	programming	languages	so	as	to	ensure	
that	all	statements	in	the	source	code	have	an	unambiguous	meaning.	

In	 ALC_TAT.2	 and	 ALC_TAT.3,	 implementation	 guidelines	 may	 be	 accepted	 as	 an	 implementation	
standard	 if	 they	 have	 been	 approved	 by	 some	 group	 of	 experts	 (e.g.	 academic	 experts,	 standards	
bodies).	 Implementation	 standards	 are	 normally	 public,	 well	 accepted	 and	 common	 practise	 in	 a	
specific	 industry,	 but	 developer-specific	 implementation	 guidelines	 may	 also	 be	 accepted	 as	 a	
standard;	the	emphasis	is	on	the	expertise.	

Tools	and	techniques	distinguishes	between	the	implementation	standards	applied	by	the	developer	
(ALC_TAT.2.3D)	 and	 the	 implementation	 standards	 for	 “all	 parts	of	 the	TOE”	 (ALC_TAT.3.3D)	which	
include	 third	 party	 software,	 hardware,	 or	 firmware.	 The	 configuration	 list	 introduced	 in	 CM	 scope	
(ALC_CMS)	requires	that	for	each	TSF	relevant	configuration	item	to	indicate	if	it	has	been	generated	
by	the	TOE	developer	or	by	third	party	developers	
12.9.4 ALC_TAT.1	Well-defined	development	tools	

Dependencies:	ADV_IMP.1	Implementation	representation	of	the	TSF	

Developer	action	elements	

ALC_TAT.1.1D	

The	developer	shall	provide	the	documentation	identifying	each	development	tool	being	used	
for	the	TOE.	

ALC_TAT.1.2D	

The	developer	shall	document	and	provide	the	selected	implementation-dependent	options	of	
each	development	tool.	

Content	and	presentation	elements	

ALC_TAT.1.1C	

Each	development	tool	used	for	implementation	shall	be	well-defined.	

ALC_TAT.1.2C	

The	documentation	 of	 each	development	 tool	 shall	 unambiguously	 define	 the	meaning	 of	 all	
statements	as	well	as	all	conventions	and	directives	used	in	the	implementation.	

ALC_TAT.1.3C	

The	documentation	 of	 each	development	 tool	 shall	 unambiguously	 define	 the	meaning	 of	 all	
implementation-dependent	options.	

Evaluator	action	elements	

ALC_TAT.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
12.9.5 ALC_TAT.2	Compliance	with	implementation	standards	

Dependencies:	ADV_IMP.1	Implementation	representation	of	the	TSF	

Developer	action	elements	

ALC_TAT.2.1D	

The	developer	shall	provide	the	documentation	identifying	each	development	tool	being	used	for	the	
TOE.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 116	
	

	

ALC_TAT.2.2D	

The	 developer	 shall	 document	 and	 provide	 the	 selected	 implementation-dependent	 options	 of	 each	
development	tool.	

ALC_TAT.2.3D	

The	developer	shall	describe	and	provide	the	implementation	standards	that	are	being	applied	
by	the	developer.	

Content	and	presentation	elements	

ALC_TAT.2.1C	

Each	development	tool	used	for	implementation	shall	be	well-defined.	

ALC_TAT.2.2C	

The	 documentation	 of	 each	 development	 tool	 shall	 unambiguously	 define	 the	 meaning	 of	 all	
statements	as	well	as	all	conventions	and	directives	used	in	the	implementation.	

ALC_TAT.2.3C	

The	 documentation	 of	 each	 development	 tool	 shall	 unambiguously	 define	 the	 meaning	 of	 all	
implementation-dependent	options.	

Evaluator	action	elements	

ALC_TAT.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ALC_TAT.2.2E	

The	evaluator	shall	confirm	that	the	implementation	standards	have	been	applied.	
12.9.6 ALC_TAT.3	Compliance	with	implementation	standards	-	all	parts	

Dependencies:	ADV_IMP.1	Implementation	representation	of	the	TSF	

Developer	action	elements	

ALC_TAT.3.1D	

The	developer	shall	provide	the	documentation	identifying	each	development	tool	being	used	for	the	
TOE.	

ALC_TAT.3.2D	

The	 developer	 shall	 document	 and	 provide	 the	 selected	 implementation-dependent	 options	 of	 each	
development	tool.	

ALC_TAT.3.3D	

The	developer	shall	describe	and	provide	the	implementation	standards	that	are	being	applied	by	the	
developer	and	by	any	third-party	providers	for	all	parts	of	the	TOE.	

Content	and	presentation	elements	

ALC_TAT.3.1C	

Each	development	tool	used	for	implementation	shall	be	well-defined.	

ALC_TAT.3.2C	

The	 documentation	 of	 each	 development	 tool	 shall	 unambiguously	 define	 the	 meaning	 of	 all	
statements	as	well	as	all	conventions	and	directives	used	in	the	implementation.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 117	
	

	

ALC_TAT.3.3C	

The	 documentation	 of	 each	 development	 tool	 shall	 unambiguously	 define	 the	 meaning	 of	 all	
implementation-dependent	options.	

Evaluator	action	elements	

ALC_TAT.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ALC_TAT.3.2E	

The	evaluator	shall	confirm	that	the	implementation	standards	have	been	applied.	
12.10 Integration	of	composition	parts	and	consistency	check	of	delivery	procedures	
(ALC_COMP)	

12.10.1 Objectives	

The	aim	of	this	family	is	to	determine	whether	

—	 the	 correct	 version	 of	 the	 dependent	 component	 is	 installed	 onto	 /	 embedded	 into	 the	 correct	
version	of	the	related	base	component,	and	

—	 the	 preparative	 guidance	 procedures	 of	 the	 base	 component	 developer	 and	 the	 dependent	
component	developer	are	 compatible	with	 the	acceptance	procedures	of	 the	 composite	product	
integrator.	

12.10.2 Component	levelling	

This	family	contains	only	one	component.	
12.10.3 Application	notes	

The	 composite	 product	 evaluator	 shall	 verify	 that	 the	 correct	 version	 of	 the	 dependent	 component	
under	evaluation	has	been	 installed	onto	/	embedded	 into	 the	evaluated	version	of	 the	related	base	
component	of	the	composite	product.	

The	 composite	product	 evaluation	 sponsor	 shall	 ensure	 that	 appropriate	evidence	generated	by	 the	
composite	 product	 integrator	 is	 available	 for	 the	 composite	 product	 evaluator.	 This	 evidence	 may	
include,	amongst	other,	 the	configuration	list	of	the	base	component	developer	(e.g.	provided	within	
his	acknowledgement	statement).	

The	 composite	 product	 evaluator	 shall	 verify	 that	 the	 delivery	 procedures	 of	 the	 base	 component	
developer	and	 the	dependent	 component	developer	are	 compatible	with	 the	acceptance	procedures	
used	by	the	composite	product	integrator.	

The	composite	product	evaluator	shall	verify	that	all	configuration	parameters	prescribed	by	the	base	
component	 developer	 and	 the	 dependent	 component	 developer	 (e.g.	 pre-personalization	 data,	 pre-
personalisation	scripts)	are	used	by	the	composite	product	integrator.	

The	 composite	product	 evaluation	 sponsor	 shall	 ensure	 that	 appropriate	evidence	generated	by	 the	
composite	 product	 integrator	 is	 available	 for	 the	 composite	 product	 evaluator.	 This	 evidence	 may	
include,	amongst	other,	the	element	of	evidence	for	the	dependent	component	reception,	acceptance	
and	 parameterisation	 by	 the	 base	 component	 developer	 (e.g.	 in	 form	 of	 his	 acknowledgement	
statement).	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 118	
	

	

12.10.4 ALC_COMP.1	Integration	of	the	dependent	component	into	the	related	base	component	
and	Consistency	check	for	delivery	and	acceptance	procedures	

Dependencies:	No	dependencies	

Developer	action	elements	

ALC_COMP.1.1D	

The	developer	shall	provide	components	configuration	evidence.	

Content	and	presentation	elements	

ALC_COMP.1.1C	

The	components	configuration	evidence	shall	show	that	the	evaluated	version	of	the	dependent	
component	has	been	installed	onto	/	embedded	into	the	evaluated	version	of	the	related	base	
component.	

ALC_COMP.1.2C	

The	components	configuration	evidence	shall	show	that:	

i.	 The	 evidence	 for	 delivery	 and	 acceptance	 compatibility	 shall	 show	 that	 the	 delivery	
procedures	of	the	base	component	developer	and	the	dependent	component	developer	are	
compatible	with	the	acceptance	procedures	of	the	composite	product	integrator.	

ii.	 The	 evidence	 shall	 show	 that	 preparative	 guidance	 procedures	 prescribed	 by	 the	 base	
component	developer	and	 the	dependent	 component	developer	are	 either	 actually	being	
used	 by	 the	 composite	 product	 integrator	 or	 compatible	 with	 the	 composite	 product	
integrator	guidance	and	do	not	contradict	each	other.	

Evaluator	action	elements	

ALC_COMP.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ALC_COMP.1.2E	

The	evaluator	shall	confirm	that	the	evidence	for	delivery	compatibility	is	complete,	coherent,	
and	internally	consistent.	

13 Class	ATE:	Tests	

13.1 Introduction	

The	 class	 “Tests”	 encompasses	 five	 families:	 Coverage	 (ATE_COV),	 Depth	 (ATE_DPT),	 Independent	
testing	 (ATE_IND)	 (i.e.	 functional	 testing	performed	by	evaluators),	 Functional	 tests	 (ATE_FUN)	and	
Composite	 functional	 testing	 (ATE_COMP).	 Testing	 provides	 assurance	 that	 the	 TSF	 behaves	 as	
described	 (in	 the	 functional	 specification,	 TOE	 design,	 implementation	 representation,	 and	 allows	
straightforward	traceability	of	SFR	in	test	scenario).	

The	 emphasis	 in	 this	 class	 is	 on	 confirmation	 that	 the	 TSF	 operates	 according	 to	 its	 design	
descriptions.	This	class	does	not	address	penetration	testing,	which	is	based	upon	an	analysis	of	the	
TSF	 that	 specifically	 seeks	 to	 identify	 vulnerabilities	 in	 the	 design	 and	 implementation	 of	 the	 TSF.	
Penetration	 testing	 is	 addressed	 separately	 as	 an	 aspect	 of	 vulnerability	 assessment	 in	 the	 AVA:	
Vulnerability	assessment	class.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 119	
	

	

The	 ATE:	 Tests	 class	 separates	 testing	 into	 developer	 testing	 and	 evaluator	 testing.	 The	 Coverage	
(ATE_COV),	 and	Depth	 (ATE_DPT)	 families	address	 the	completeness	of	developer	 testing.	Coverage	
(ATE_COV)	addresses	 the	 rigour	with	which	 the	 functional	 specification	 is	 tested;	Depth	 (ATE_DPT)	
addresses	whether	 testing	 against	other	design	descriptions	 (security	 architecture,	TOE	design,	 and	
implementation	representation)	is	required.	

Functional	 tests	 (ATE_FUN)	 addresses	 the	 performing	 of	 the	 tests	 by	 the	 developer	 and	 how	 this	
testing	 should	 be	 documented.	 Finally,	 Independent	 testing	 (ATE_IND)	 then	 addresses	 evaluator	
testing:	 whether	 the	 evaluator	 should	 repeat	 part	 or	 all	 of	 the	 developer	 testing	 and	 how	 much	
independent	testing	the	evaluator	should	do.	

Composite	 functional	 testing	 (ATE_COMP)	 determines	 whether	 the	 composite	 product	 as	 a	 whole	
exhibits	the	properties	necessary	to	satisfy	the	functional	requirements	of	its	Security	Target.	

Figure	11	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	

	

Figure	11	—	ATE:	Tests	class	decomposition	

13.2 Coverage	(ATE_COV)	

13.2.1 Objectives	

This	 family	 establishes	 that	 the	 TSF	 has	 been	 tested	 against	 its	 functional	 specification.	 This	 is	
achieved	through	an	examination	of	developer	evidence	of	correspondence.	
13.2.2 Component	levelling	

The	components	in	this	family	are	levelled	on	the	basis	of	specification.	
13.2.3 Application	notes	

13.2.4 ATE_COV.1	Evidence	of	coverage	

Dependencies:	 ADV_FSP.2	Security-enforcing	functional	specification	

	 ATE_FUN.1	Functional	testing	
Objectives	

The	objective	of	this	component	is	to	establish	that	some	of	the	TSFIs	have	been	tested.	

Application	notes	

In	this	component	the	developer	shows	how	tests	in	the	test	documentation	correspond	to	TSFIs	in	the	
functional	specification.	This	can	be	achieved	by	a	statement	of	correspondence,	perhaps	using	a	table.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 120	
	

	

Developer	action	elements	

ATE_COV.1.1D	

The	developer	shall	provide	evidence	of	the	test	coverage.	

Content	and	presentation	elements	

ATE_COV.1.1C	

The	evidence	of	the	test	coverage	shall	show	the	correspondence	between	the	tests	in	the	test	
documentation	and	the	TSFIs	in	the	functional	specification.	

Evaluator	action	elements	

ATE_COV.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
13.2.5 ATE_COV.2	Analysis	of	coverage	

Dependencies:	 ADV_FSP.2	Security-enforcing	functional	specification	

	 ATE_FUN.1	Functional	testing	
Objectives	

The	objective	of	this	component	is	to	confirm	that	all	of	the	TSFIs	have	been	tested.	

Application	notes	

In	this	component	the	developer	confirms	that	tests	in	the	test	documentation	correspond	to	all	of	the	
TSFIs	in	the	functional	specification.	This	can	be	achieved	by	a	statement	of	correspondence,	perhaps	
using	a	table,	but	the	developer	also	provides	an	analysis	of	the	test	coverage.	

Developer	action	elements	

ATE_COV.2.1D	

The	developer	shall	provide	an	analysis	of	the	test	coverage.	

Content	and	presentation	elements	

ATE_COV.2.1C	

The	analysis	of	the	test	coverage	shall	demonstrate	the	correspondence	between	the	tests	in	the	test	
documentation	and	the	TSFIs	in	the	functional	specification.	

ATE_COV.2.2C	

The	analysis	of	the	test	coverage	shall	demonstrate	that	all	TSFIs	in	the	functional	specification	
have	been	tested.	

Evaluator	action	elements	

ATE_COV.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
13.2.6 ATE_COV.3	Rigorous	analysis	of	coverage	

Dependencies:	 ADV_FSP.2	Security-enforcing	functional	specification	

	 ATE_FUN.1	Functional	testing	
Objectives	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 121	
	

	

In	 this	 component,	 the	 objective	 is	 to	 confirm	 that	 the	 developer	 performed	 exhaustive	 tests	 of	 all	
interfaces	in	the	functional	specification.	

The	objective	of	this	component	is	to	confirm	that	all	parameters	of	all	of	the	TSFIs	have	been	tested.	

Application	notes	

In	this	component	the	developer	is	required	to	show	how	tests	in	the	test	documentation	correspond	
to	 all	 of	 the	 TSFIs	 in	 the	 functional	 specification.	 This	 can	 be	 achieved	 by	 a	 statement	 of	
correspondence,	perhaps	using	a	table,	but	in	addition	the	developer	is	required	to	demonstrate	that	
the	 tests	 exercise	 all	 of	 the	 parameters	 of	 all	 TSFIs.	 This	 additional	 requirement	 includes	 bounds	
testing	(i.e.	verifying	that	errors	are	generated	when	stated	limits	are	exceeded)	and	negative	testing	
(e.g.	when	access	is	given	to	User	A,	verifying	not	only	that	User	A	now	has	access,	but	also	that	User	B	
did	 not	 suddenly	 gain	 access).	 This	 kind	 of	 testing	 is	 not,	 strictly	 speaking,	 exhaustive	 because	 not	
every	possible	value	of	the	parameters	is	expected	to	be	checked.	

Developer	action	elements	

ATE_COV.3.1D	

The	developer	shall	provide	an	analysis	of	the	test	coverage.	

Content	and	presentation	elements	

ATE_COV.3.1C	

The	analysis	of	the	test	coverage	shall	demonstrate	the	correspondence	between	the	tests	in	the	test	
documentation	and	the	TSFIs	in	the	functional	specification.	

ATE_COV.3.2C	

The	analysis	of	the	test	coverage	shall	demonstrate	that	all	TSFIs	in	the	functional	specification	have	
been	completely	tested.	

Evaluator	action	elements	

ATE_COV.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

13.3 Depth	(ATE_DPT)	

13.3.1 Objectives	

The	components	in	this	family	deal	with	the	level	of	detail	to	which	the	TSF	is	tested	by	the	developer.	
Testing	 of	 the	 TSF	 is	 based	 upon	 increasing	 depth	 of	 information	 derived	 from	 additional	 design	
representations	 and	 descriptions	 (TOE	 design,	 implementation	 representation,	 and	 security	
architecture	description).	

The	objective	 is	 to	counter	 the	risk	of	missing	an	error	 in	 the	development	of	 the	TOE.	Testing	 that	
exercises	specific	internal	interfaces	can	provide	assurance	not	only	that	the	TSF	exhibits	the	desired	
external	 security	 behaviour,	 but	 also	 that	 this	 behaviour	 stems	 from	 correctly	 operating	 internal	
functionality.	
13.3.2 Component	levelling	

The	 components	 in	 this	 family	 are	 levelled	 on	 the	 basis	 of	 increasing	 detail	 provided	 in	 the	 TSF	
representations,	from	the	TOE	design	to	the	implementation	representation.	This	levelling	reflects	the	
TSF	representations	presented	in	the	ADV	class.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 122	
	

	

13.3.3 Application	notes	

The	TOE	design	describes	the	internal	components	(e.g.	subsystems)	and,	perhaps,	modules	of	the	TSF,	
together	 with	 a	 description	 of	 the	 interfaces	 among	 these	 components	 and	 modules.	 Evidence	 of	
testing	 of	 this	 TOE	 design	must	 show	 that	 the	 internal	 interfaces	 have	 been	 exercised	 and	 seen	 to	
behave	as	described.	This	may	be	achieved	through	testing	via	the	external	interfaces	of	the	TSF,	or	by	
testing	of	the	TOE	subsystem	or	module	interfaces	in	isolation,	perhaps	employing	a	test	harness.	In	
cases	where	some	aspects	of	an	 internal	 interface	cannot	be	tested	via	 the	external	 interfaces,	 there	
should	either	be	justification	that	these	aspects	need	not	be	tested,	or	the	internal	interface	needs	to	
be	 tested	 directly.	 In	 the	 latter	 case	 the	 TOE	 design	 needs	 to	 be	 sufficiently	 detailed	 in	 order	 to	
facilitate	direct	testing.	

In	 cases	 where	 the	 description	 of	 the	 TSF's	 architectural	 soundness	 (in	 Security	 Architecture	
(ADV_ARC))	 cites	 specific	 mechanisms,	 the	 tests	 performed	 by	 the	 developer	 must	 show	 that	 the	
mechanisms	have	been	exercised	and	seen	to	behave	as	described.	

At	the	highest	component	of	this	family,	the	testing	is	performed	not	only	against	the	TOE	design,	but	
also	against	the	implementation	representation.	
13.3.4 ATE_DPT.1	Testing:	basic	design	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_TDS.2	Architectural	design	

	 ATE_FUN.1	Functional	testing	
Objectives	

The	subsystem	descriptions	of	the	TSF	provide	a	high-level	description	of	the	internal	workings	of	the	
TSF.	Testing	at	 the	 level	of	 the	TOE	subsystems	provides	assurance	that	the	TSF	subsystems	behave	
and	interact	as	described	in	the	TOE	design	and	the	security	architecture	description.	

Developer	action	elements	

ATE_DPT.1.1D	

The	developer	shall	provide	the	analysis	of	the	depth	of	testing.	

Content	and	presentation	elements	

ATE_DPT.1.1C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	the	correspondence	between	the	tests	in	
the	test	documentation	and	the	TSF	subsystems	in	the	TOE	design.	

ATE_DPT.1.2C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	that	all	TSF	subsystems	in	the	TOE	design	
have	been	tested.	

Evaluator	action	elements	

ATE_DPT.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
13.3.5 ATE_DPT.2	Testing:	security	enforcing	modules	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_TDS.3	Basic	modular	design	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 123	
	

	

	 ATE_FUN.1	Functional	testing	
Objectives	

The	 subsystem	 and	module	 descriptions	 of	 the	 TSF	 provide	 a	 high-level	 description	 of	 the	 internal	
workings,	and	a	description	of	the	interfaces	of	the	SFR-enforcing	modules,	of	the	TSF.	Testing	at	this	
level	 of	 TOE	 description	 provides	 assurance	 that	 the	 TSF	 subsystems	 and	 SFR-enforcing	 modules	
behave	and	interact	as	described	in	the	TOE	design	and	the	security	architecture	description.	

Developer	action	elements	

ATE_DPT.2.1D	

The	developer	shall	provide	the	analysis	of	the	depth	of	testing.	

Content	and	presentation	elements	

ATE_DPT.2.1C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	the	correspondence	between	the	tests	in	the	test	
documentation	and	the	TSF	subsystems	and	SFR-enforcing	modules	in	the	TOE	design.	

ATE_DPT.2.2C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	that	all	TSF	subsystems	in	the	TOE	design	have	
been	tested.	

ATE_DPT.2.3C	

The	analysis	of	 the	depth	of	 testing	 shall	demonstrate	 that	 the	SFR-enforcing	modules	 in	 the	
TOE	design	have	been	tested.	

Evaluator	action	elements	

ATE_DPT.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
13.3.6 ATE_DPT.3	Testing:	modular	design	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_TDS.4	Semiformal	modular	design	

	 ATE_FUN.1	Functional	testing	
Objectives	

The	 subsystem	 and	module	 descriptions	 of	 the	 TSF	 provide	 a	 high-level	 description	 of	 the	 internal	
workings,	and	a	description	of	 the	 interfaces	of	 the	modules,	of	 the	TSF.	Testing	at	 this	 level	of	TOE	
description	 provides	 assurance	 that	 the	 TSF	 subsystems	 and	 modules	 behave	 and	 interact	 as	
described	in	the	TOE	design	and	the	security	architecture	description.	

Developer	action	elements	

ATE_DPT.3.1D	

The	developer	shall	provide	the	analysis	of	the	depth	of	testing.	

Content	and	presentation	elements	

ATE_DPT.3.1C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	the	correspondence	between	the	tests	in	the	test	
documentation	and	the	TSF	subsystems	and	modules	in	the	TOE	design.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 124	
	

	

ATE_DPT.3.2C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	that	all	TSF	subsystems	in	the	TOE	design	have	
been	tested.	

ATE_DPT.3.3C	

The	analysis	of	 the	depth	of	 testing	shall	demonstrate	 that	all	TSF	modules	 in	 the	TOE	design	have	
been	tested.	

Evaluator	action	elements	

ATE_DPT.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
13.3.7 ATE_DPT.4	Testing:	implementation	representation	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_TDS.4	Semiformal	modular	design	

	 ADV_IMP.1	Implementation	representation	of	the	TSF	

	 ATE_FUN.1	Functional	testing	
Objectives	

The	 subsystem	 and	module	 descriptions	 of	 the	 TSF	 provide	 a	 high-level	 description	 of	 the	 internal	
workings,	and	a	description	of	 the	 interfaces	of	 the	modules,	of	 the	TSF.	Testing	at	 this	 level	of	TOE	
description	 provides	 assurance	 that	 the	 TSF	 subsystems	 and	 modules	 behave	 and	 interact	 as	
described	 in	 the	 TOE	 design	 and	 the	 security	 architecture	 description,	 and	 in	 accordance	with	 the	
implementation	representation.	

Developer	action	elements	

ATE_DPT.4.1D	

The	developer	shall	provide	the	analysis	of	the	depth	of	testing.	

Content	and	presentation	elements	

ATE_DPT.4.1C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	the	correspondence	between	the	tests	in	the	test	
documentation	and	the	TSF	subsystems	and	modules	in	the	TOE	design.	

ATE_DPT.4.2C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	that	all	TSF	subsystems	in	the	TOE	design	have	
been	tested.	

ATE_DPT.4.3C	

The	analysis	of	 the	depth	of	 testing	shall	demonstrate	that	all	modules	 in	the	TOE	design	have	been	
tested.	

ATE_DPT.4.4C	

The	analysis	of	the	depth	of	testing	shall	demonstrate	that	the	TSF	operates	in	accordance	with	
its	implementation	representation.	

Evaluator	action	elements	

ATE_DPT.4.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 125	
	

	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

13.4 Functional	tests	(ATE_FUN)	

13.4.1 Objectives	

Functional	 testing	 performed	 by	 the	 developer	 provides	 assurance	 that	 the	 tests	 in	 the	 test	
documentation	 are	 performed	 and	 documented	 correctly.	 The	 correspondence	 of	 these	 tests	 to	 the	
design	 descriptions	 of	 the	 TSF	 is	 achieved	 through	 the	 Coverage	 (ATE_COV)	 and	 Depth	 (ATE_DPT)	
families.	

This	family	contributes	to	providing	assurance	that	the	likelihood	of	undiscovered	flaws	is	relatively	
small.	

The	 families	 Coverage	 (ATE_COV),	 Depth	 (ATE_DPT)	 and	 Functional	 tests	 (ATE_FUN)	 are	 used	 in	
combination	to	define	 the	evidence	of	 testing	 to	be	supplied	by	a	developer.	 Independent	 functional	
testing	by	the	evaluator	is	specified	by	Independent	testing	(ATE_IND).	
13.4.2 Component	levelling	

This	family	contains	two	components,	the	higher	requiring	that	ordering	dependencies	are	analysed.	
13.4.3 Application	notes	

Procedures	for	performing	tests	are	expected	to	provide	instructions	for	using	test	programs	and	test	
suites,	 including	 the	 test	 environment,	 test	 conditions,	 test	 data	 parameters	 and	 values.	 The	 test	
procedures	should	also	show	how	the	test	results	are	derived	from	the	test	inputs.	

Ordering	dependencies	are	relevant	when	the	successful	execution	of	a	particular	test	depends	upon	
the	existence	of	a	particular	state.	For	example,	this	might	require	that	test	A	be	executed	immediately	
before	test	B,	since	the	state	resulting	from	the	successful	execution	of	test	A	is	a	prerequisite	for	the	
successful	execution	of	test	B.	Thus,	failure	of	test	B	could	be	related	to	a	problem	with	the	ordering	
dependencies.	In	the	above	example,	test	B	could	fail	because	test	C	(rather	than	test	A)	was	executed	
immediately	before	it,	or	the	failure	of	test	B	could	be	related	to	a	failure	of	test	A.	
13.4.4 ATE_FUN.1	Functional	testing	

Dependencies:	ATE_COV.1	Evidence	of	coverage	

Objectives	

The	 objective	 is	 for	 the	 developer	 to	 demonstrate	 that	 the	 tests	 in	 the	 test	 documentation	 are	
performed	and	documented	correctly.	

Developer	action	elements	

ATE_FUN.1.1D	

The	developer	shall	test	the	TSF	and	document	the	results.	

ATE_FUN.1.2D	

The	developer	shall	provide	test	documentation.	

Content	and	presentation	elements	

ATE_FUN.1.1C	

The	test	documentation	shall	consist	of	test	plans,	expected	test	results	and	actual	test	results.	

ATE_FUN.1.2C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 126	
	

	

The	 test	 plans	 shall	 identify	 the	 tests	 to	 be	 performed	 and	 describe	 the	 scenarios	 for	
performing	each	test.	These	scenarios	shall	include	any	ordering	dependencies	on	the	results	
of	other	tests.	

ATE_FUN.1.3C	

The	expected	test	results	shall	show	the	anticipated	outputs	from	a	successful	execution	of	the	
tests.	

ATE_FUN.1.4C	

The	actual	test	results	shall	be	consistent	with	the	expected	test	results.	

Evaluator	action	elements	

ATE_FUN.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
13.4.5 ATE_FUN.2	Ordered	functional	testing	

Dependencies:	ATE_COV.1	Evidence	of	coverage	

Objectives	

The	 objectives	 are	 for	 the	 developer	 to	 demonstrate	 that	 the	 tests	 in	 the	 test	 documentation	 are	
performed	and	documented	correctly,	and	to	ensure	that	testing	is	structured	such	as	to	avoid	circular	
arguments	about	the	correctness	of	the	interfaces	being	tested.	

Application	notes	

Although	 the	 test	 procedures	may	 state	 pre-requisite	 initial	 test	 conditions	 in	 terms	 of	 ordering	 of	
tests,	 they	may	not	provide	a	rationale	for	the	ordering.	An	analysis	of	test	ordering	is	an	important	
factor	in	determining	the	adequacy	of	testing,	as	there	is	a	possibility	of	faults	being	concealed	by	the	
ordering	of	tests.	

Developer	action	elements	

ATE_FUN.2.1D	

The	developer	shall	test	the	TSF	and	document	the	results.	

ATE_FUN.2.2D	

The	developer	shall	provide	test	documentation.	

Content	and	presentation	elements	

ATE_FUN.2.1C	

The	test	documentation	shall	consist	of	test	plans,	expected	test	results	and	actual	test	results.	

ATE_FUN.2.2C	

The	test	plans	shall	identify	the	tests	to	be	performed	and	describe	the	scenarios	for	performing	each	
test.	These	scenarios	shall	include	any	ordering	dependencies	on	the	results	of	other	tests.	

ATE_FUN.2.3C	

The	expected	test	results	shall	show	the	anticipated	outputs	from	a	successful	execution	of	the	tests.	

ATE_FUN.2.4C	

The	actual	test	results	shall	be	consistent	with	the	expected	test	results.	

ATE_FUN.2.5C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 127	
	

	

The	test	documentation	shall	include	an	analysis	of	the	test	procedure	ordering	dependencies.	

Evaluator	action	elements	

ATE_FUN.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
13.5 Independent	testing	(ATE_IND)	

13.5.1 Objectives	

The	objectives	of	 this	 family	are	built	upon	 the	assurances	achieved	 in	 the	ATE_FUN,	ATE_COV,	and	
ATE_DPT	families	by	verifying	the	developer	testing	and	performing	additional	tests	by	the	evaluator.	
13.5.2 Component	levelling	

Levelling	is	based	upon	the	amount	of	developer	test	documentation	and	test	support	and	the	amount	
of	evaluator	testing.	
13.5.3 Application	notes	

This	 family	 deals	 with	 the	 degree	 to	 which	 there	 is	 independent	 functional	 testing	 of	 the	 TSF.	
Independent	 functional	 testing	may	 take	 the	 form	 of	 repeating	 the	 developer's	 functional	 tests	 (in	
whole	or	in	part)	or	of	extending	the	scope	or	the	depth	of	the	developer's	tests.	These	activities	are	
complementary,	and	an	appropriate	mix	must	be	planned	for	each	TOE,	which	takes	into	account	the	
availability	and	coverage	of	test	results,	and	the	functional	complexity	of	the	TSF.	

Sampling	of	developer	tests	is	intended	to	provide	confirmation	that	the	developer	has	carried	out	his	
planned	 test	 programme	 on	 the	 TSF,	 and	 has	 correctly	 recorded	 the	 results.	 The	 size	 of	 sample	
selected	 will	 be	 influenced	 by	 the	 detail	 and	 quality	 of	 the	 developer's	 functional	 test	 results.	 The	
evaluator	will	also	need	to	consider	the	scope	for	devising	additional	tests,	and	the	relative	benefit	that	
may	be	gained	from	effort	in	these	two	areas.	It	is	recognized	that	repetition	of	all	developer	tests	may	
be	feasible	and	desirable	in	some	cases,	but	may	be	very	arduous	and	less	productive	in	others.	The	
highest	 component	 in	 this	 family	 should	 therefore	 be	 used	with	 caution.	 Sampling	will	 address	 the	
whole	 range	 of	 test	 results	 available,	 including	 those	 supplied	 to	 meet	 the	 requirements	 of	 both	
Coverage	(ATE_COV)	and	Depth	(ATE_DPT).	

There	 is	also	a	need	to	consider	the	different	configurations	of	 the	TOE	that	are	 included	within	the	
evaluation.	The	evaluator	will	need	to	assess	the	applicability	of	the	results	provided,	and	to	plan	his	
own	testing	accordingly.	

The	 suitability	 of	 the	 TOE	 for	 testing	 is	 based	 on	 the	 access	 to	 the	 TOE,	 and	 the	 supporting	
documentation	and	information	required	(including	any	test	software	or	tools)	to	run	tests.	The	need	
for	such	support	is	addressed	by	the	dependencies	to	other	assurance	families.	

Additionally,	suitability	of	the	TOE	for	testing	may	be	based	on	other	considerations.	For	example,	the	
version	of	the	TOE	submitted	by	the	developer	may	not	be	the	final	version.	

The	term	interfaces	refers	to	interfaces	described	in	the	functional	specification	and	TOE	design,	and	
parameters	passed	through	invocations	identified	in	the	implementation	representation.	The	exact	set	
of	 interfaces	 to	 be	 used	 is	 selected	 through	 Coverage	 (ATE_COV)	 and	 the	 Depth	 (ATE_DPT)	
components.	

References	to	a	subset	of	the	interfaces	are	intended	to	allow	the	evaluator	to	design	an	appropriate	
set	of	tests	which	is	consistent	with	the	objectives	of	the	evaluation	being	conducted.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 128	
	

	

13.5.4 ATE_IND.1	Independent	testing	-	conformance	

Dependencies:	 ADV_FSP.1	Basic	functional	specification	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	
Objectives	

In	this	component,	the	objective	is	to	demonstrate	that	the	TOE	operates	in	accordance	with	its	design	
representations	and	guidance	documents.	

Application	notes	

This	component	does	not	address	the	use	of	developer	test	results.	It	is	applicable	where	such	results	
are	not	available,	and	also	in	cases	where	the	developer's	testing	is	accepted	without	validation.	The	
evaluator	 is	 required	 to	 devise	 and	 conduct	 tests	 with	 the	 objective	 of	 confirming	 that	 the	 TOE	
operates	 in	 accordance	 with	 its	 design	 representations,	 including	 but	 not	 limited	 to	 the	 functional	
specification.	The	approach	is	to	gain	confidence	in	correct	operation	through	representative	testing,	
rather	 than	 to	 conduct	every	possible	 test.	The	extent	of	 testing	 to	be	planned	 for	 this	purpose	 is	 a	
methodology	issue,	and	needs	to	be	considered	in	the	context	of	a	particular	TOE	and	the	balance	of	
other	evaluation	activities.	

Developer	action	elements	

ATE_IND.1.1D	

The	developer	shall	provide	the	TOE	for	testing.	

Content	and	presentation	elements	

ATE_IND.1.1C	

The	TOE	shall	be	suitable	for	testing.	

Evaluator	action	elements	

ATE_IND.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ATE_IND.1.2E	

The	evaluator	shall	test	a	subset	of	the	TSF	to	confirm	that	the	TSF	operates	as	specified.	
13.5.5 ATE_IND.2	Independent	testing	-	sample	

Dependencies:	 ADV_FSP.2	Security-enforcing	functional	specification	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	

	 ATE_COV.1	Evidence	of	coverage	

	 ATE_FUN.1	Functional	testing	
Objectives	

In	this	component,	the	objective	is	to	demonstrate	that	the	TOE	operates	in	accordance	with	its	design	
representations	 and	 guidance	 documents.	 Evaluator	 testing	 confirms	 that	 the	 developer	 performed	
some	tests	of	some	interfaces	in	the	functional	specification.	

Application	notes	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 129	
	

	

The	intent	is	that	the	developer	should	provide	the	evaluator	with	materials	necessary	for	the	efficient	
reproduction	 of	 developer	 tests.	 This	 may	 include	 such	 things	 as	 machine-readable	 test	
documentation,	test	programs,	etc.	

This	 component	 contains	 a	 requirement	 that	 the	 evaluator	 has	 available	 test	 results	 from	 the	
developer	 to	 supplement	 the	 programme	 of	 testing.	 The	 evaluator	 will	 repeat	 a	 sample	 of	 the	
developer's	 tests	 to	 gain	 confidence	 in	 the	 results	obtained.	Having	established	 such	 confidence	 the	
evaluator	will	build	upon	the	developer's	testing	by	conducting	additional	tests	that	exercise	the	TOE	
in	a	different	manner.	By	using	a	platform	of	validated	developer	test	results	the	evaluator	is	able	to	
gain	confidence	that	the	TOE	operates	correctly	in	a	wider	range	of	conditions	than	would	be	possible	
purely	using	the	developer's	own	efforts,	given	a	fixed	level	of	resource.	Having	gained	confidence	that	
the	developer	has	 tested	the	TOE,	 the	evaluator	will	also	have	more	 freedom,	where	appropriate,	 to	
concentrate	testing	in	areas	where	examination	of	documentation	or	specialist	knowledge	has	raised	
particular	concerns.	

Developer	action	elements	

ATE_IND.2.1D	

The	developer	shall	provide	the	TOE	for	testing.	

Content	and	presentation	elements	

ATE_IND.2.1C	

The	TOE	shall	be	suitable	for	testing.	

ATE_IND.2.2C	

The	 developer	 shall	 provide	 an	 equivalent	 set	 of	 resources	 to	 those	 that	 were	 used	 in	 the	
developer's	functional	testing	of	the	TSF.	

Evaluator	action	elements	

ATE_IND.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ATE_IND.2.2E	

The	evaluator	shall	execute	a	sample	of	tests	in	the	test	documentation	to	verify	the	developer	
test	results.	

ATE_IND.2.3E	

The	evaluator	shall	test	a	subset	of	the	TSF	to	confirm	that	the	TSF	operates	as	specified.	
13.5.6 ATE_IND.3	Independent	testing	-	complete	

Dependencies:	 ADV_FSP.4	Complete	functional	specification	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	

	 ATE_COV.1	Evidence	of	coverage	

	 ATE_FUN.1	Functional	testing	
Objectives	

In	this	component,	the	objective	is	to	demonstrate	that	the	TOE	operates	in	accordance	with	its	design	
representations	 and	 guidance	 documents.	 Evaluator	 testing	 includes	 repeating	 all	 of	 the	 developer	
tests.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 130	
	

	

Application	notes	

The	intent	is	that	the	developer	should	provide	the	evaluator	with	materials	necessary	for	the	efficient	
reproduction	 of	 developer	 tests.	 This	 may	 include	 such	 things	 as	 machine-readable	 test	
documentation,	test	programs,	etc.	

In	this	component	the	evaluator	must	repeat	all	of	the	developer's	tests	as	part	of	the	programme	of	
testing.	As	in	the	previous	component	the	evaluator	will	also	conduct	tests	that	aim	to	exercise	the	TSF	
in	a	different	manner	from	that	achieved	by	the	developer.	In	cases	where	developer	testing	has	been	
exhaustive,	there	may	remain	little	scope	for	this.	

Developer	action	elements	

ATE_IND.3.1D	

The	developer	shall	provide	the	TOE	for	testing.	

Content	and	presentation	elements	

ATE_IND.3.1C	

The	TOE	shall	be	suitable	for	testing.	

ATE_IND.3.2C	

The	developer	shall	provide	an	equivalent	set	of	resources	to	those	that	were	used	in	the	developer's	
functional	testing	of	the	TSF.	

Evaluator	action	elements	

ATE_IND.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ATE_IND.3.2E	

The	evaluator	shall	execute	all	tests	in	the	test	documentation	to	verify	the	developer	test	results.	

ATE_IND.3.3E	

The	evaluator	shall	test	the	TSF	to	confirm	that	the	entire	TSF	operates	as	specified.	

13.6 Composite	functional	testing	(ATE_COMP)	

13.6.1 Objectives	

The	 aim	 of	 this	 family	 is	 to	 determine	 whether	 the	 composite	 product	 as	 a	 whole	 exhibits	 the	
properties	necessary	to	satisfy	the	functional	requirements	of	its	composite	product	Security	Target.	
13.6.2 Component	levelling	

This	family	contains	only	one	component.	
13.6.3 Application	notes	

A	composite	product	can	be	tested	by	testing	its	components	separately	and	by	testing	the	integrated	
product.	 Separate	 testing	 means	 that	 its	 base	 component	 and	 its	 dependent	 component	 are	 being	
tested	 independently	of	 each	other.	A	 lot	of	 tests	of	 the	base	 component	may	have	been	performed	
within	 the	 scope	 of	 its	 accomplished	 evaluation.	 The	 dependent	 component	 may	 be	 tested	 on	 a	
simulator	or	an	emulator,	which	represent	a	virtual	machine.	

Integration	testing	means	that	the	composite	product	is	being	tested	as	it	is:	the	dependent	component	
is	running	together	with	the	related	base	component.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 131	
	

	

Some	 dependent	 component	 functionality	 testing	 can	 only	 be	 performed	 on	 emulators,	 before	 its	
embedding/integration	onto	 the	base	 component,	 as	 effectiveness	of	 this	 testing	may	not	be	 visible	
using	 the	 interfaces	 of	 the	 composite	 product.	 Nevertheless,	 functional	 testing	 of	 the	 composite	
product	 shall	 be	 performed	 also	 on	 composite	 product	 samples	 according	 to	 the	 description	 of	 the	
security	 functions	 of	 the	 composite	 product	 and	 using	 the	 standard	 approach	 as	 required	 by	 the	
relevant	ATE	assurance	class.	No	additional	developer’s	action	is	required	here.	

Since	 the	 amount,	 the	 coverage	 and	 the	 depth	 of	 the	 functional	 tests	 of	 the	 base	 component	 have	
already	been	validated	by	the	base	component	evaluation,	it	is	not	necessary	to	re-perform	these	tasks	
in	 the	composite	evaluation.	Please	note	that	 the	ETR	for	composite	evaluation	does	not	provide	any	
information	on	functional	testing	for	the	base	component.	

The	behaviour	of	 implementation	of	some	SFRs	can	depend	on	properties	of	 the	base	component	as	
well	 as	 on	 the	dependent	 component	 (e.g.	 correctness	of	 the	measures	of	 the	 composite	product	 to	
withstand	 a	 side	 channel	 attack	 or	 correctness	 of	 the	 implementation	 of	 tamper	 resistance	 against	
physical	attacks).	In	such	case	the	SFR	implementation	shall	be	tested	on	the	final	composite	product,	
but	not	on	a	simulator	or	an	emulator.	

This	family	focuses	exclusively	on	testing	of	the	composite	product	as	a	whole	and	represents	merely	
partial	 efforts	 within	 the	 general	 test	 approach	 being	 covered	 by	 the	 assurance	 class	 ATE.	 These	
integration	 tests	shall	be	specified	and	performed,	whereby	 the	approach	of	 the	standard	assurance	
families	of	the	class	ATE	shall	be	applied.	

The	 composite	 product	 evaluation	 sponsor	 shall	 ensure	 that	 the	 following	 is	 available	 for	 the	
composite	product	evaluator:	

• composite	product	samples	suitable	for	testing.	
13.6.4 ATE_COMP.1	Composite	product	functional	testing	

Dependencies:	No	dependencies	

Developer	action	elements	

ATE_COMP.1.1D	

The	developer	shall	provide	a	set	of	tests	as	required	by	the	assurance	package	chosen.	

ATE_COMP.1.2D	

The	developer	shall	provide	the	composite	product	for	testing.	

Content	and	presentation	elements	

ATE_COMP.1.1C	

Content	and	presentation	of	the	specification	and	documentation	of	the	integration	tests	shall	
correspond	to	the	standard10	requirements	of	the	assurance	families	ATE_FUN	and	ATE_COV.	

ATE_COMP.1.2C	

The	composite	product	provided	shall	be	suitable	for	testing.	

Evaluator	action	elements	

ATE_COMP.1.1E	

	

10	i.e.	as	defined	by	ISO/IEC	18045	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 132	
	

	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

14 Class	AVA:	Vulnerability	assessment	

14.1 Introduction	

The	 AVA:	 Vulnerability	 assessment	 class	 addresses	 the	 possibility	 of	 exploitable	 vulnerabilities	
introduced	in	the	development	or	the	operation	of	the	TOE.	

Figure	12	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	

	

Figure	12	—	AVA:	Vulnerability	assessment	class	decomposition	

14.2 Application	notes	

Generally,	the	vulnerability	assessment	activity	covers	various	vulnerabilities	in	the	development	and	
operation	of	the	TOE.	Development	vulnerabilities	take	advantage	of	some	property	of	the	TOE,	or	the	
product	where	the	TOE	resides,	which	was	introduced	during	its	development,	e.g.	defeating	the	TSF	
self-protection	 through	tampering,	direct	attack	or	monitoring	of	 the	TSF,	defeating	 the	TSF	domain	
separation	 through	 monitoring	 or	 direct	 attack	 the	 TSF,	 or	 defeating	 non-bypassability	 through	
circumventing	 (bypassing)	 the	 TSF.	 Explicit	 dependencies	 of	 the	 TOE	 on	 IT	 systems	 in	 the	
environment	must	 also	 be	 considered.	 Operational	 vulnerabilities	 take	 advantage	 of	weaknesses	 in	
non-technical	countermeasures	to	violate	the	TOE	SFRs,	e.g.	misuse	or	incorrect	configuration.	Misuse	
investigates	 whether	 the	 TOE	 can	 be	 configured	 or	 used	 in	 a	manner	 that	 is	 insecure,	 but	 that	 an	
administrator	or	user	of	the	TOE	would	reasonably	believe	to	be	secure.	

Assessment	of	development	vulnerabilities	is	covered	by	the	assurance	family	AVA_VAN.	Basically,	all	
development	 vulnerabilities	 can	 be	 considered	 in	 the	 context	 of	 AVA_VAN	due	 to	 the	 fact,	 that	 this	
family	allows	application	of	a	wide	range	of	assessment	methodologies	being	unspecific	to	the	kind	of	
an	 attack	 scenario.	 These	 unspecific	 assessment	 methodologies	 comprise,	 among	 other,	 also	 the	
specific	methodologies	for	those	TSF	where	covert	channels	are	to	be	considered	(a	channel	capacity	
estimation	 can	 be	 done	 using	 informal	 engineering	 measurements,	 as	 well	 as	 actual	 test	
measurements)	or	 can	be	overcome	by	 the	use	of	 sufficient	 resources	 in	 the	 form	of	a	direct	attack	
(underlying	technical	concept	of	those	TSF	is	based	on	probabilistic	or	permutational	mechanisms;	a	
qualification	of	their	security	behaviour	and	the	effort	required	to	overcome	them	can	be	made	using	a	
quantitative	or	statistical	analysis).	

If	 there	 are	 security	 objectives	 specified	 in	 the	 ST	 to	 either	 to	 prevent	 one	 user	 of	 the	 TOE	 from	
observing	activity	associated	with	another	user	of	the	TOE,	or	to	ensure	that	information	flows	cannot	
be	used	 to	achieve	enforced	 illicit	data	signals,	 covert	channel	analysis	 should	be	considered	during	
the	 conduct	 of	 the	 vulnerability	 analysis.	 This	 is	 often	 reflected	 by	 the	 inclusion	 of	 Unobservability	
(FPR_UNO)	and	multilevel	access	control	policies	specified	 through	Access	control	policy	(FDP_ACC)	
and/or	Information	flow	control	policy	(FDP_IFC)	requirements	in	the	ST.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 133	
	

	

14.3 Vulnerability	analysis	(AVA_VAN)	

14.3.1 Objectives	

Vulnerability	 analysis	 is	 an	 assessment	 to	 determine	 whether	 potential	 vulnerabilities	 identified,	
during	the	evaluation	of	the	development	and	anticipated	operation	of	the	TOE	or	by	other	methods	
(e.g.	 by	 flaw	 hypotheses	 or	 quantitative	 or	 statistical	 analysis	 of	 the	 security	 behaviour	 of	 the	
underlying	security	mechanisms),	could	allow	attackers	to	violate	the	SFRs.	

Vulnerability	analysis	deals	with	 the	 threats	 that	an	attacker	will	be	able	 to	discover	 flaws	 that	will	
allow	unauthorised	access	to	data	and	functionality,	allow	the	ability	to	interfere	with	or	alter	the	TSF,	
or	interfere	with	the	authorized	capabilities	of	other	users.	

In	case	of	a	multi-assurance	evaluation	the	vulnerability	analysis	shall	assess	the	defined	sub-TSF	as	
well	as	the	TOE	as	a	whole.	
14.3.2 Component	levelling	

Levelling	 is	 based	 on	 an	 increasing	 rigour	 of	 vulnerability	 analysis	 by	 the	 evaluator	 and	 increased	
levels	of	attack	potential	required	by	an	attacker	to	identify	and	exploit	the	potential	vulnerabilities.	
14.3.3 AVA_VAN.1	Vulnerability	survey	

Dependencies:	 ADV_FSP.1	Basic	functional	specification	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	
Objectives	

A	vulnerability	survey	of	information	available	in	the	public	domain	is	performed	by	the	evaluator	to	
ascertain	potential	vulnerabilities	that	may	be	easily	found	by	an	attacker.	

The	 evaluator	 performs	 penetration	 testing,	 to	 confirm	 that	 the	 potential	 vulnerabilities	 cannot	 be	
exploited	 in	 the	 operational	 environment	 for	 the	 TOE.	 Penetration	 testing	 is	 performed	 by	 the	
evaluator	assuming	an	attack	potential	of	Basic.	

Developer	action	elements	

AVA_VAN.1.1D	

The	developer	shall	provide	the	TOE	for	testing.	

Content	and	presentation	elements	

AVA_VAN.1.1C	

The	TOE	shall	be	suitable	for	testing.	

Evaluator	action	elements	

AVA_VAN.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

AVA_VAN.1.2E	

The	 evaluator	 shall	 perform	 a	 search	 of	 public	 domain	 sources	 to	 identify	 potential	
vulnerabilities	in	the	TOE.	

AVA_VAN.1.3E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 134	
	

	

The	 evaluator	 shall	 conduct	 penetration	 testing,	 based	 on	 the	 identified	 potential	
vulnerabilities,	 to	 determine	 that	 the	 TOE	 is	 resistant	 to	 attacks	 performed	 by	 an	 attacker	
possessing	Basic	attack	potential.	
14.3.4 AVA_VAN.2	Vulnerability	analysis	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_FSP.2	Security-enforcing	functional	specification	

	 ADV_TDS.1	Basic	design	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	
Objectives	

A	 vulnerability	 analysis	 is	 performed	 by	 the	 evaluator	 to	 ascertain	 the	 presence	 of	 potential	
vulnerabilities.	

The	 evaluator	 performs	 penetration	 testing,	 to	 confirm	 that	 the	 potential	 vulnerabilities	 cannot	 be	
exploited	 in	 the	 operational	 environment	 for	 the	 TOE.	 Penetration	 testing	 is	 performed	 by	 the	
evaluator	assuming	an	attack	potential	of	Basic.	

Developer	action	elements	

AVA_VAN.2.1D	

The	developer	shall	provide	the	TOE	for	testing.	

AVA_VAN.2.2D	

The	developer	shall	provide	a	list	of	third-	party	components	included	in	the	TOE	and	the	TOE	
delivery.	

Content	and	presentation	elements	

AVA_VAN.2.1C	

The	TOE	shall	be	suitable	for	testing.	

AVA_VAN.2.2C	

The	 list	 of	 third-	 party	 components	 shall	 include	 components	provided	by	 third	parties,	 and	
that	are	part	of	the	TOE	or	otherwise	part	of	the	TOE	delivery.	

Evaluator	action	elements	

AVA_VAN.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

AVA_VAN.2.2E	

The	evaluator	shall	perform	a	search	of	public	domain	sources	to	identify	potential	vulnerabilities	in	
the	TOE	the	components	in	the	list	of	third-	party	components,	and	specific	IT	products	in	the	
environment	that	the	TOE	depends	on.	

AVA_VAN.2.3E	

The	 evaluator	 shall	 perform	 an	 independent	 vulnerability	 analysis	 of	 the	 TOE	 using	 the	
guidance	 documentation,	 functional	 specification,	 TOE	 design	 and	 security	 architecture	
description	to	identify	potential	vulnerabilities	in	the	TOE.	

AVA_VAN.2.4E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 135	
	

	

The	 evaluator	 shall	 conduct	 penetration	 testing,	 based	 on	 the	 identified	 potential	 vulnerabilities,	 to	
determine	 that	 the	 TOE	 is	 resistant	 to	 attacks	 performed	 by	 an	 attacker	 possessing	 Basic	 attack	
potential.	
14.3.5 AVA_VAN.3	Focused	vulnerability	analysis	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_FSP.4	Complete	functional	specification	

	 ADV_TDS.3	Basic	modular	design	

	 ADV_IMP.1	Implementation	representation	of	the	TSF	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	

	 ATE_DPT.1	Testing:	basic	design	
Objectives	

A	 vulnerability	 analysis	 is	 performed	 by	 the	 evaluator	 to	 ascertain	 the	 presence	 of	 potential	
vulnerabilities.	

The	 evaluator	 performs	 penetration	 testing,	 to	 confirm	 that	 the	 potential	 vulnerabilities	 cannot	 be	
exploited	 in	 the	 operational	 environment	 for	 the	 TOE.	 Penetration	 testing	 is	 performed	 by	 the	
evaluator	assuming	an	attack	potential	of	Enhanced-Basic.	

Developer	action	elements	

AVA_VAN.3.1D	

The	developer	shall	provide	the	TOE	for	testing.	

AVA_VAN.3.2D	

The	 developer	 shall	 provide	 a	 list	 of	 third-	 party	 components	 included	 in	 the	 TOE	 and	 the	 TOE	
delivery.	

Content	and	presentation	elements	

AVA_VAN.3.1C	

The	TOE	shall	be	suitable	for	testing.	

AVA_VAN.3.2C	

The	list	of	third-	party	components	shall	 include	components	provided	by	third	parties,	and	that	are	
part	of	the	TOE	or	otherwise	part	of	the	TOE	delivery.	

Evaluator	action	elements	

AVA_VAN.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

AVA_VAN.3.2E	

The	evaluator	shall	perform	a	search	of	public	domain	sources	to	identify	potential	vulnerabilities	in	
the	 TOE	 the	 components	 in	 the	 list	 of	 third-	 party	 components,	 and	 specific	 IT	 products	 in	 the	
environment	that	the	TOE	depends	on.	

AVA_VAN.3.3E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 136	
	

	

The	 evaluator	 shall	 perform	 an	 independent,	 focused	 vulnerability	 analysis	 of	 the	 TOE	 using	 the	
guidance	 documentation,	 functional	 specification,	 TOE	design,	 security	 architecture	 description	and	
implementation	representation	to	identify	potential	vulnerabilities	in	the	TOE.	

AVA_VAN.3.4E	

The	 evaluator	 shall	 conduct	 penetration	 testing,	 based	 on	 the	 identified	 potential	 vulnerabilities,	 to	
determine	that	the	TOE	is	resistant	to	attacks	performed	by	an	attacker	possessing	Enhanced-Basic	
attack	potential.	
14.3.6 AVA_VAN.4	Methodical	vulnerability	analysis	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_FSP.4	Complete	functional	specification	

	 ADV_TDS.3	Basic	modular	design	

	 ADV_IMP.1	Implementation	representation	of	the	TSF	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	

	 ATE_DPT.1	Testing:	basic	design	
Objectives	

A	 methodical	 vulnerability	 analysis	 is	 performed	 by	 the	 evaluator	 to	 ascertain	 the	 presence	 of	
potential	vulnerabilities.	

The	 evaluator	 performs	 penetration	 testing,	 to	 confirm	 that	 the	 potential	 vulnerabilities	 cannot	 be	
exploited	 in	 the	 operational	 environment	 for	 the	 TOE.	 Penetration	 testing	 is	 performed	 by	 the	
evaluator	assuming	an	attack	potential	of	Moderate.	

Developer	action	elements	

AVA_VAN.4.1D	

The	developer	shall	provide	the	TOE	for	testing.	

AVA_VAN.4.2D	

The	 developer	 shall	 provide	 a	 list	 of	 third-	 party	 components	 included	 in	 the	 TOE	 and	 the	 TOE	
delivery.	

Content	and	presentation	elements	

AVA_VAN.4.1C	

The	TOE	shall	be	suitable	for	testing.	

AVA_VAN.4.2C	

The	list	of	third-	party	components	shall	 include	components	provided	by	third	parties,	and	that	are	
part	of	the	TOE	or	otherwise	part	of	the	TOE	delivery.	

Evaluator	action	elements	

AVA_VAN.4.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

AVA_VAN.4.2E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 137	
	

	

The	evaluator	shall	perform	a	search	of	public	domain	sources	to	identify	potential	vulnerabilities	in	
the	 TOE	 the	 components	 in	 the	 list	 of	 third-	 party	 components,	 and	 specific	 IT	 products	 in	 the	
environment	that	the	TOE	depends	on.	

AVA_VAN.4.3E	

The	evaluator	shall	perform	an	independent,	methodical	vulnerability	analysis	of	the	TOE	using	the	
guidance	 documentation,	 functional	 specification,	 TOE	 design,	 security	 architecture	 description	 and	
implementation	representation	to	identify	potential	vulnerabilities	in	the	TOE.	

AVA_VAN.4.4E	

The	 evaluator	 shall	 conduct	 penetration	 testing	 based	 on	 the	 identified	 potential	 vulnerabilities	 to	
determine	that	the	TOE	is	resistant	to	attacks	performed	by	an	attacker	possessing	Moderate	attack	
potential.	
14.3.7 AVA_VAN.5	Advanced	methodical	vulnerability	analysis	

Dependencies:	 ADV_ARC.1	Security	architecture	description	

	 ADV_FSP.4	Complete	functional	specification	

	 ADV_TDS.3	Basic	modular	design	

	 ADV_IMP.1	Implementation	representation	of	the	TSF	

	 AGD_OPE.1	Operational	user	guidance	

	 AGD_PRE.1	Preparative	procedures	

	 ATE_DPT.1	Testing:	basic	design	
Objectives	

A	 methodical	 vulnerability	 analysis	 is	 performed	 by	 the	 evaluator	 to	 ascertain	 the	 presence	 of	
potential	vulnerabilities.	

The	 evaluator	 performs	 penetration	 testing,	 to	 confirm	 that	 the	 potential	 vulnerabilities	 cannot	 be	
exploited	 in	 the	 operational	 environment	 for	 the	 TOE.	 Penetration	 testing	 is	 performed	 by	 the	
evaluator	assuming	an	attack	potential	of	High.	

Developer	action	elements	

AVA_VAN.5.1D	

The	developer	shall	provide	the	TOE	for	testing.	

AVA_VAN.5.2D	

The	 developer	 shall	 provide	 a	 list	 of	 third-	 party	 components	 included	 in	 the	 TOE	 and	 the	 TOE	
delivery.	

Content	and	presentation	elements	

AVA_VAN.5.1C	

The	TOE	shall	be	suitable	for	testing.	

AVA_VAN.5.2C	

The	list	of	third-	party	components	shall	 include	components	provided	by	third	parties,	and	that	are	
part	of	the	TOE	or	otherwise	part	of	the	TOE	delivery.	

Evaluator	action	elements	

AVA_VAN.5.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 138	
	

	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

AVA_VAN.5.2E	

The	evaluator	shall	perform	a	search	of	public	domain	sources	to	identify	potential	vulnerabilities	in	
the	 TOE	 the	 components	 in	 the	 list	 of	 third-	 party	 components,	 and	 specific	 IT	 products	 in	 the	
environment	that	the	TOE	depends	on.	

AVA_VAN.5.3E	

The	evaluator	 shall	perform	an	 independent,	methodical	 vulnerability	analysis	of	 the	TOE	using	 the	
guidance	 documentation,	 functional	 specification,	 TOE	 design,	 security	 architecture	 description	 and	
implementation	representation	to	identify	potential	vulnerabilities	in	the	TOE.	

AVA_VAN.5.4E	

The	 evaluator	 shall	 conduct	 penetration	 testing	 based	 on	 the	 identified	 potential	 vulnerabilities	 to	
determine	 that	 the	 TOE	 is	 resistant	 to	 attacks	 performed	 by	 an	 attacker	 possessing	 High	 attack	
potential.	

14.4 Composite	vulnerability	assessment	(AVA_COMP)	

14.4.1 Objectives	

The	 aim	 of	 this	 family	 is	 to	 determine	 the	 exploitability	 of	 flaws	 or	 weaknesses	 in	 the	 composite	
product	as	a	whole	in	the	intended	environment.	
14.4.2 Component	levelling	

This	family	contains	only	one	component.	
14.4.3 AVA_COMP.1	Composite	product	vulnerability	assessment	

Dependencies:	No	dependencies	

Application	notes	

This	 family	 focuses	exclusively	on	 the	vulnerability	assessment	of	 the	composite	product	as	a	whole	
and	 represents	merely	partial	 efforts	 within	 the	 general	 approach	 being	 covered	 by	 the	 standard11	
assurance	family	of	the	class	AVA:	AVA_VAN.	

The	 composite	 product	 evaluator	 shall	 perform	 a	 vulnerability	 analysis	 for	 the	 composite	 product	
using,	amongst	other,	the	results	of	the	base	component	evaluation.	This	vulnerability	analysis	shall	be	
confirmed	by	penetration	testing.	

The	 composite	 product	 evaluator	 shall	 check	 that	 the	 confidentiality	 protection	 of	 the	 dependent	
component	 embedded	 into/installed	onto	 the	base	 component	 is	 consistent	with	 the	 confidentiality	
level	claimed	by	the	dependent	component	developer	for	ALC_DVS.	

In	 special	 cases,	 the	 vulnerability	 analysis	 and	 the	 definition	 of	 attacks	 might	 be	 difficult,	 need	
considerable	 time	 and	 require	 extensive	 pre-testing,	 if	 only	 documentation	 is	 available.	 The	 base	
component	may	also	be	used	in	a	way	that	was	not	foreseen	by	the	base	component	developer	and	the	
base	 component	 evaluator,	 or	 the	 dependent	 component	 developer	 may	 not	 have	 followed	 the	
stipulations	 provided	 with	 the	 base	 component.	 Different	 possibilities	 exist	 to	 shorten	 composite	
product	vulnerability	analysis	in	such	cases:	E.g.	the	composite	product	evaluator	may	consult	the	base	

	

11	i.e.	as	defined	by	ISO/IEC	18045	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 139	
	

	

component	 evaluator	 and	 draw	 on	 his	 experience	 gained	 during	 the	 base	 component	 evaluation.	
Alternatively,	 an	 approach	 aiming	 on	 the	 separation	 of	 vulnerabilities	 of	 the	 dependent	 component	
and	the	base	component	by	using	specific	test	samples	of	the	base	component	on	which	the	composite	
product	evaluator	may	load	test	dependent	components	on	his	own	discretion.	The	intention	hereby	is	
to	 use	 test	 dependent	 components	 without	 countermeasures	 and	 without	 deactivating	 any	 base	
component	inherent	countermeasure.	

The	 results	 of	 the	 vulnerability	 assessment	 for	 the	 base	 component	 of	 the	 composite	 product	
represented	in	the	ETR	for	composite	evaluation	can	be	re-used	under	the	following	conditions:	they	
are	up-to-date	and	all	composite	activities	for	correctness	–	ASE_COMP.1,	ALC_COMP.1,	ADV_COMP.1	
and	ATE_COMP.1	–	are	finalised	with	the	verdict	PASS.	

Due	to	composing	of	the	base	component	and	the	dependent	component	a	new	quality	arises,	which	
may	cause	additional	vulnerabilities	of	the	base	component	which	might	be	not	mentioned	in	the	ETR	
for	 composite	 evaluation.	 In	 these	 circumstances	 the	 composite	 product	 evaluation	 authority	 may	
require	a	re-assessment	or	re-evaluation	of	the	base	component	focusing	on	the	new	vulnerabilities’	
issues.	

The	 composite	product	 evaluation	 sponsor	 shall	 ensure	 that	 the	 following	 is	made	available	 for	 the	
composite	product	evaluator:	

—	 the	base	component-related	user	guidance,	

—	 the	 base	 component-related	 ETR	 for	 composite	 evaluation	 prepared	 by	 the	 base	 component	
evaluator,	

—	 the	report	of	the	base	component	evaluation	authority.	

14.4.414.4.3 AVA_COMP.1	Composite	product	vulnerability	assessment	

Dependencies:	No	dependencies	

Developer	action	elements	

AVA_COMP.1.1D	

The	developer	shall	provide	the	composite	product	for	penetrationg	testing.	

Content	and	presentation	elements	

AVA_COMP.1.1C	

The	composite	product	provided	shall	be	suitable	for	testing	as	a	whole.	

Evaluator	action	elements	

AVA_COMP.1.1E	

The	evaluator	shall	conduct	penetration	testing	of	the	composite	product	as	a	whole	building	
on	the	evaluator’s	own	vulnerability	analysis	to	ensure	that	the	vulnerabilities	being	relevant	
for	the	composite	product	Security	Target	are	not	exploitable.	

15 Class	ACO:	Composition	

15.1 Introduction	

The	class	ACO:	Composition	encompasses	five	families.	These	families	specify	assurance	requirements	
that	are	designed	to	provide	confidence	that	a	composed	TOE	will	operate	securely	when	relying	upon	
security	functionality	provided	by	previously	evaluated	software,	firmware	or	hardware	components.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 140	
	

	

Composition	involves	taking	two	or	more	IT	entities	successfully	evaluated	against	the	ISO/IEC	15408	
series	security	assurance	requirements	packages	(base	components	and	dependent	components,	see	
Annex	B)	 and	 combining	 them	 for	 use,	 with	 no	 further	 development	 of	 either	 IT	 entity.	 The	
development	 of	 additional	 IT	 entities	 is	 not	 included	 (entities	 that	 have	 not	 previously	 been	 the	
subject	of	a	component	evaluation).	The	composed	TOE	forms	a	new	product	that	can	be	installed	and	
integrated	into	any	specific	environment	instance	that	meets	the	objectives	for	the	environment.	

This	 approach	 does	 not	 provide	 an	 alternative	 approach	 for	 the	 evaluation	 of	 components.	
Composition	 under	 ACO	 provides	 a	 composed	 TOE	 integrator	 a	 method,	 which	 can	 be	 used	 as	 an	
alternative	to	other	assurance	levels	specified	in	ISO/IEC	15408,	to	gain	confidence	in	a	TOE	that	is	the	
combination	 of	 two	 or	 more	 successfully	 evaluated	 components	 without	 having	 to	 re-evaluate	 the	
composite	TSF.	(The	composed	TOE	integrator	is	referred	to	as	“developer”	throughout	the	ACO	class,	
with	any	references	to	the	developer	of	the	base	or	dependent	components	clarified	as	such.)	

Composed	Assurance	Packages,	 as	defined	 in	part	5	provide	an	assurance	scale	 for	composed	TOEs.	
This	 assurance	 scale	 is	 required	 in	 addition	 to	 other	 assurance	 packages,	 for	 example	 the	 EALs,	
because	 to	 combine	 components	 evaluated	 against	 another	 assurance	 package	 and	 gain	 equivalent	
assurance	in	the	resulting	composed	TOE,	all	SARs	have	to	be	applied	to	the	composed	TOE.	Although	
reuse	can	be	made	of	the	component	TOE	evaluation	results,	there	are	often	additional	aspects	of	the	
components	 that	have	to	be	considered	 in	 the	composed	TOE,	as	described	 in	Annex	B.3.	Due	to	the	
different	parties	involved	in	a	composed	TOE	evaluation	activity	it	is	generally	not	possible	to	gain	all	
necessary	evidence	about	 these	additional	 aspects	of	 the	components	 to	 apply	 the	appropriate	EAL.	
Hence,	CAPs	have	been	defined	to	address	the	issue	of	combining	evaluated	components	and	gaining	a	
meaningful	result.	This	is	discussed	further	in	Annex	B.	

	

Figure	13	—	Relationship	between	ACO	families	and	interactions	between	components	

In	 a	 composed	 TOE	 it	 is	 generally	 the	 case	 that	 one	 component	 relies	 on	 the	 services	 provided	 by	
another	component.	The	component	requiring	services	 is	 termed	the	dependent	component	and	the	
component	 providing	 the	 services	 is	 termed	 the	 base	 component.	 This	 interaction	 and	 distinct	 is	
discussed	 further	 in	 Annex	B.	 It	 is	 assumed	 to	 be	 the	 case	 that	 the	 developer	 of	 the	 dependent	
component	 is	 supporting	 the	 composed	TOE	 evaluation	 in	 some	manner	 (as	 developer,	 sponsor,	 or	
just	 cooperating	 and	 providing	 the	 necessary	 evaluation	 evidence	 from	 the	 dependent	 component	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 141	
	

	

evaluation)	 The	 ACO	 components	 included	 in	 the	 CAP	 assurance	 packages	 should	 not	 be	 used	 as	
augmentations	for	component	TOE	evaluations,	as	this	would	provide	no	meaningful	assurance	for	the	
component.	

The	families	within	the	ACO	class	interact	 in	a	similar	manner	to	the	ADV,	ATE	and	AVA	classes	in	a	
component	 TOE	 evaluation	 and	 hence	 leverage	 from	 the	 specification	 of	 requirements	 from	 those	
classes	where	 applicable.	There	 are	however	 a	 few	 items	 specific	 to	 composed	TOE	evaluations.	To	
determine	 how	 the	 components	 interact	 and	 identify	 any	 deviations	 from	 the	 evaluations	 of	 the	
components,	 the	 dependencies	 that	 the	 dependent	 component	 has	 upon	 the	 underlying	 base	
component	are	identified	(ACO_REL).	This	reliance	on	the	base	component	is	specified	in	terms	of	the	
interfaces	 through	 which	 the	 dependent	 component	 makes	 calls	 for	 services	 in	 support	 of	 the	
dependent	component	SFRs.	The	 interfaces,	and	at	higher	 levels	 the	supporting	behaviour,	provided	
by	the	base	component	in	response	to	those	service	requests	are	analysed	in	ACO_DEV.	The	ACO_DEV	
family	 is	 based	 on	 the	 ADV_TDS	 family,	 as	 at	 the	 simplest	 level	 the	 TSF	 of	 each	 component	 can	 be	
viewed	 as	 a	 subsystem	 of	 the	 composed	 TOE,	with	 additional	 portions	 of	 each	 component	 seen	 as	
additional	 subsystems.	 Therefore,	 the	 interfaces	 between	 the	 components	 are	 seen	 as	 interactions	
between	subsystems	in	a	component	TOE	evaluation	(see	Figure	13).	

It	 is	 possible	 that	 the	 interfaces	 and	 supporting	 behaviour	 descriptions	 provided	 for	 ACO_DEV	 are	
incomplete.	This	is	determined	during	the	conduct	of	ACO_COR.	The	ACO_COR	family	takes	the	outputs	
of	ACO_REL	and	ACO_DEV	and	determines	whether	the	components	are	being	used	in	their	evaluated	
configuration	 and	 identifies	 where	 any	 specifications	 are	 incomplete,	 which	 are	 then	 identified	 as	
inputs	into	testing	(ACO_CTT)	and	vulnerability	analysis	(ACO_VUL)	activities	of	the	composed	TOE.	

Testing	of	the	composed	TOE	is	performed	to	determine	that	the	composed	TOE	exhibits	the	expected	
behaviour	 as	 determined	 by	 the	 composed	 TOE	 SFRs,	 and	 at	 higher	 levels	 demonstrates	 the	
compatibility	of	the	interfaces	between	the	components	of	the	composed	TOE.	

The	 vulnerability	 analysis	 of	 the	 composed	 TOE	 leverages	 from	 the	 outputs	 of	 the	 vulnerability	
analysis	 of	 the	 component	 evaluations.	 The	 composed	 TOE	 vulnerability	 analysis	 considers	 any	
residual	vulnerabilities	from	the	component	evaluations	to	determine	that	the	residual	vulnerabilities	
are	 not	 applicable	 to	 the	 composed	 TOE.	 A	 search	 of	 publicly	 available	 information	 relating	 to	 the	
components	is	also	performed	to	identify	any	issues	reported	in	the	components	since	the	completion	
of	the	respective	evaluations.	

The	interaction	between	the	ACO	families	is	depicted	in	Figure	14	below.	This	shows	by	solid	arrowed	
lines	where	the	evidence	and	understanding	gained	in	one	family	feeds	into	the	next	activity	and	the	
dashed	 arrows	 identify	 where	 an	 activity	 explicitly	 traces	 back	 to	 the	 composed	 TOE	 SFRs,	 as	
described	above.	

	

Figure	14	—	Relationship	between	ACO	families	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 142	
	

	

Further	discussion	of	the	definition	and	interactions	within	composed	TOEs	is	provided	in	Annex	B.	

Figure	15	shows	the	families	within	this	class,	and	the	hierarchy	of	components	within	the	families.	

	

Figure	15	—	ACO:	Composition	class	decomposition	

15.2 Composition	rationale	(ACO_COR)	

15.2.1 Objectives	

This	 family	 addresses	 the	 requirement	 to	 demonstrate	 that	 the	 base	 component	 can	 provide	 an	
appropriate	level	of	assurance	for	use	in	composition.	
15.2.2 Component	levelling	

There	is	only	a	single	component	in	this	family.	
15.2.3 ACO_COR.1	Composition	rationale	

Dependencies:	 ACO_DEV.1	Functional	Description	

	 ALC_CMC.1	Labelling	of	the	TOE	

	 ACO_REL.1	Basic	reliance	information	
Developer	action	elements	

ACO_COR.1.1D	

The	developer	shall	provide	composition	rationale	for	the	base	component.	

Content	and	presentation	elements	

ACO_COR.1.1C	

The	composition	rationale	shall	demonstrate	that	a	level	of	assurance	at	least	as	high	as	that	of	
the	 dependent	 component	 has	 been	 obtained	 for	 the	 support	 functionality	 of	 the	 base	
component,	 when	 the	 base	 component	 is	 configured	 as	 required	 to	 support	 the	 TSF	 of	 the	
dependent	component.	

Evaluator	action	elements	

ACO_COR.1.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 143	
	

	

15.3 Development	evidence	(ACO_DEV)	

15.3.1 Objectives	

This	 family	 sets	 out	 requirements	 for	 a	 specification	 of	 the	 base	 component	 in	 increasing	 levels	 of	
detail.	 Such	 information	 is	 required	 to	gain	 confidence	 that	 the	appropriate	 security	 functionality	 is	
provided	 to	 support	 the	 requirements	 of	 the	 dependent	 component	 (as	 identified	 in	 the	 reliance	
information).	
15.3.2 Component	levelling	

The	 components	 are	 levelled	 on	 the	 basis	 of	 increasing	 amounts	 of	 detail	 about	 the	 interfaces	
provided,	and	how	they	are	implemented.	
15.3.3 Application	notes	

The	 TSF	 of	 the	 base	 component	 is	 often	 defined	 without	 knowledge	 of	 the	 dependencies	 of	 the	
possible	applications	with	which	 it	may	by	composed.	The	TSF	of	 this	base	component	 is	defined	to	
include	 all	 parts	 of	 the	 base	 component	 that	 have	 to	 be	 relied	 upon	 for	 enforcement	 of	 the	 base	
component	 SFRs.	This	will	 include	 all	 parts	 of	 the	base	 component	 required	 to	 implement	 the	base	
component	SFRs.	

The	functional	specification	of	the	base	component	will	describe	the	TSFI	in	terms	of	the	interfaces	the	
base	 component	provides	 to	 allow	an	external	 entity	 to	 invoke	operations	of	 the	TSF.	This	 includes	
interfaces	 to	 the	human	user	 to	permit	 interaction	with	 the	operation	of	 the	TSF	 invoking	SFRs	and	
also	interfaces	allowing	an	external	IT	entity	to	make	calls	into	the	TSF.	

The	functional	specification	only	provides	a	description	of	what	the	TSF	provides	at	its	interface	and	
the	means	by	which	that	TSF	functionality	are	invoked.	Therefore,	the	functional	specification	does	not	
necessarily	provide	a	complete	 interface	specification	of	all	possible	 interfaces	available	between	an	
external	entity	and	the	base	component.	It	does	not	include	what	the	TSF	expects/requires	from	the	
operational	environment.	The	description	of	what	a	dependent	component	TSF	relies	upon	of	a	base	
component	 is	 considered	 in	 Reliance	 of	 dependent	 component	 (ACO_REL)	 and	 the	 development	
information	evidence	provides	a	response	to	the	interfaces	specified.	

The	development	 information	evidence	 includes	a	specification	of	 the	base	component.	This	may	be	
the	evidence	used	during	evaluation	of	the	base	component	to	satisfy	the	ADV	requirements,	or	may	
be	another	form	of	evidence	produced	by	either	the	base	component	developer	or	the	composed	TOE	
developer.	This	specification	of	the	base	component	is	used	during	Development	evidence	(ACO_DEV)	
to	gain	confidence	that	the	appropriate	security	functionality	is	provided	to	support	the	requirements	
of	the	dependent	component.	The	level	of	detail	required	of	this	evidence	increases	to	reflect	the	level	
of	 required	 assurance	 in	 the	 composed	 TOE.	 This	 is	 expected	 to	 broadly	 reflect	 the	 increasing	
confidence	gained	 from	the	application	of	 the	assurance	packages	 to	 the	components.	The	evaluator	
determines	 that	 this	 description	 of	 the	 base	 component	 is	 consistent	with	 the	 reliance	 information	
provided	for	the	dependent	component.	
15.3.4 ACO_DEV.1	Functional	Description	

Dependencies:	ACO_REL.1	Basic	reliance	information	

Objectives	

A	description	of	 the	 interfaces	 in	 the	base	component,	on	which	 the	dependent	component	relies,	 is	
required.	 This	 is	 examined	 to	 determine	 whether	 or	 not	 it	 is	 consistent	 with	 the	 description	 of	
interfaces	on	which	the	dependent	component	relies,	as	provided	in	the	reliance	information.	

Developer	action	elements	

ACO_DEV.1.1D	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 144	
	

	

The	developer	shall	provide	development	information	for	the	base	component.	

Content	and	presentation	elements	

ACO_DEV.1.1C	

The	 development	 information	 shall	 describe	 the	 purpose	 of	 each	 interface	 of	 the	 base	
component	used	in	the	composed	TOE.	

ACO_DEV.1.2C	

The	development	information	shall	show	correspondence	between	the	interfaces,	used	in	the	
composed	TOE,	of	the	base	component	and	the	dependent	component	to	support	the	TSF	of	the	
dependent	component.	

Evaluator	action	elements	

ACO_DEV.1.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ACO_DEV.1.2E	

The	 evaluator	 shall	 determine	 that	 the	 interface	 description	 provided	 is	 consistent	with	 the	
reliance	information	provided	for	the	dependent	component.	
15.3.5 ACO_DEV.2	Basic	evidence	of	design	

Dependencies:	ACO_REL.1	Basic	reliance	information	

Objectives	

A	description	of	 the	 interfaces	 in	 the	base	component,	on	which	 the	dependent	component	relies,	 is	
required.	 This	 is	 examined	 to	 determine	 whether	 or	 not	 it	 is	 consistent	 with	 the	 description	 of	
interfaces	on	which	the	dependent	component	relies,	as	provided	in	the	reliance	information.	

In	 addition,	 the	 security	 behaviour	 of	 the	 base	 component	 that	 supports	 the	 dependent	 component	
TSF	is	described.	

Developer	action	elements	

ACO_DEV.2.1D	

The	developer	shall	provide	development	information	for	the	base	component.	

Content	and	presentation	elements	

ACO_DEV.2.1C	

The	development	information	shall	describe	the	purpose	and	method	of	use	of	each	interface	of	the	
base	component	used	in	the	composed	TOE.	

ACO_DEV.2.2C	

The	 development	 information	 shall	 provide	 a	 high-level	 description	 of	 the	 behaviour	 of	 the	
base	component,	which	supports	the	enforcement	of	the	dependent	component	SFRs.	

ACO_DEV.2.3C	

The	 development	 information	 shall	 show	 correspondence	 between	 the	 interfaces,	 used	 in	 the	
composed	 TOE,	 of	 the	 base	 component	 and	 the	 dependent	 component	 to	 support	 the	 TSF	 of	 the	
dependent	component.	

Evaluator	action	elements	

ACO_DEV.2.1E	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 145	
	

	

The	evaluator	shall	confirm	that	the	information	meets	all	requirements	for	content	and	presentation	
of	evidence.	

ACO_DEV.2.2E	

The	evaluator	shall	determine	that	 the	 interface	description	provided	 is	consistent	with	the	reliance	
information	provided	for	the	dependent	component.	
15.3.6 ACO_DEV.3	Detailed	evidence	of	design	

Dependencies:	ACO_REL.2	Reliance	information	

Objectives	

A	description	of	 the	 interfaces	 in	 the	base	component,	on	which	 the	dependent	component	relies,	 is	
required.	 This	 is	 examined	 to	 determine	 whether	 or	 not	 it	 is	 consistent	 with	 the	 description	 of	
interfaces	on	which	the	dependent	component	relies,	as	provided	in	the	reliance	information.	

The	interface	description	of	the	architecture	of	the	base	component	is	provided	to	enable	the	evaluator	
to	determine	whether	or	not	that	interface	formed	part	of	the	TSF	of	the	base	component.	

Developer	action	elements	

ACO_DEV.3.1D	

The	developer	shall	provide	development	information	for	the	base	component.	

Content	and	presentation	elements	

ACO_DEV.3.1C	

The	development	 information	shall	describe	 the	purpose	and	method	of	use	of	each	 interface	of	 the	
base	component	used	in	the	composed	TOE.	

ACO_DEV.3.2C	

The	 development	 information	 shall	 identify	 the	 subsystems	 of	 the	 base	 component	 that	
provide	interfaces	of	the	base	component	used	in	the	composed	TOE.	

ACO_DEV.3.3C	

The	 development	 information	 shall	 provide	 a	 high-level	 description	 of	 the	 behaviour	 of	 the	 base	
component	subsystems,	which	support	the	enforcement	of	the	dependent	component	SFRs.	

ACO_DEV.3.4C	

The	development	information	shall	provide	a	mapping	from	the	interfaces	to	the	subsystems	of	
the	base	component.	

ACO_DEV.3.5C	

The	 development	 information	 shall	 show	 correspondence	 between	 the	 interfaces,	 used	 in	 the	
composed	 TOE,	 of	 the	 base	 component	 and	 the	 dependent	 component	 to	 support	 the	 TSF	 of	 the	
dependent	component.	

Evaluator	action	elements	

ACO_DEV.3.1E	

The	evaluator	shall	confirm	that	the	information	meets	all	requirements	for	content	and	presentation	
of	evidence.	

ACO_DEV.3.2E	

The	evaluator	shall	determine	that	 the	 interface	description	provided	 is	consistent	with	the	reliance	
information	provided	for	the	dependent	component.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 146	
	

	

15.4 Reliance	of	dependent	component	(ACO_REL)	

15.4.1 Objectives	

The	 purpose	 of	 this	 family	 is	 to	 provide	 evidence	 that	 describes	 the	 reliance	 that	 a	 dependent	
component	 has	 upon	 the	 base	 component.	 This	 information	 is	 useful	 to	 persons	 responsible	 for	
integrating	 the	component	with	other	evaluated	 IT	components	 to	 form	the	composed	TOE,	and	 for	
providing	insight	into	the	security	properties	of	the	resulting	composition.	

This	 provides	 a	 description	 of	 the	 interface	 between	 the	 dependent	 and	 base	 components	 of	 the	
composed	TOE	that	may	not	have	been	analysed	during	evaluation	of	 the	 individual	components,	as	
the	interfaces	were	not	TSFIs	of	the	individual	component	TOEs.	
15.4.2 Component	levelling	

The	 components	 in	 this	 family	 are	 levelled	 according	 to	 the	 amount	 of	 detail	 provided	 in	 the	
description	of	the	reliance	by	the	dependent	component	upon	the	base	component.	
15.4.3 Application	notes	

The	 Reliance	 of	 dependent	 component	 (ACO_REL)	 family	 considers	 the	 interactions	 between	 the	
components	 where	 the	 dependent	 component	 relies	 upon	 a	 service	 from	 the	 base	 component	 to	
support	the	operation	of	security	functionality	of	the	dependent	component.	The	interfaces	into	these	
services	 of	 the	 base	 component	 may	 not	 have	 been	 considered	 during	 evaluation	 of	 the	 base	
component	 because	 the	 service	 in	 the	 base	 component	was	 not	 considered	 security-relevant	 in	 the	
component	evaluation,	either	because	of	the	inherent	purpose	of	the	service	(e.g.	adjust	type	font)	or	
because	associated	ISO/IEC	15408-2	SFRs	are	not	being	claimed	in	the	base	component's	ST	(e.g.	the	
login	interface	when	no	FIA:	Identification	and	authentication	SFRs	are	claimed).	These	interfaces	into	
the	base	component	are	often	viewed	as	functional	interfaces	in	the	evaluation	of	the	base	component,	
and	are	in	addition	to	the	security	interfaces	(TSFI)	considered	in	the	functional	specification.	

In	summary,	the	TSFIs	described	in	the	functional	specification	only	include	the	calls	made	into	a	TSF	
by	 external	 entities	 and	 responses	 to	 those	 calls.	 Calls	 made	 by	 a	 TSF,	 which	 were	 not	 explicitly	
considered	during	evaluation	of	the	components,	are	described	by	the	reliance	information	provided	
to	satisfy	Reliance	of	dependent	component	(ACO_REL).	
15.4.4 ACO_REL.1	Basic	reliance	information	

Dependencies:	No	dependencies.	

Developer	action	elements	

ACO_REL.1.1D	

The	developer	shall	provide	reliance	information	of	the	dependent	component.	

Content	and	presentation	elements	

ACO_REL.1.1C	

The	 reliance	 information	 shall	 describe	 the	 functionality	 of	 the	 base	 component	 hardware,	
firmware	and/or	software	that	is	relied	upon	by	the	dependent	component	TSF.	

ACO_REL.1.2C	

The	 reliance	 information	 shall	 describe	 all	 interactions	 through	 which	 the	 dependent	
component	TSF	requests	services	from	the	base	component.	

ACO_REL.1.3C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 147	
	

	

The	 reliance	 information	 shall	 describe	 how	 the	 dependent	 TSF	 protects	 itself	 from	
interference	and	tampering	by	the	base	component.	

Evaluator	action	elements	

ACO_REL.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	
15.4.5 ACO_REL.2	Reliance	information	

Dependencies:	No	dependencies.	

Developer	action	elements	

ACO_REL.2.1D	

The	developer	shall	provide	reliance	information	of	the	dependent	component.	

Content	and	presentation	elements	

ACO_REL.2.1C	

The	reliance	 information	shall	describe	the	functionality	of	 the	base	component	hardware,	 firmware	
and/or	software	that	is	relied	upon	by	the	dependent	component	TSF.	

ACO_REL.2.2C	

The	reliance	information	shall	describe	all	interactions	through	which	the	dependent	component	TSF	
requests	services	from	the	base	component.	

ACO_REL.2.3C	

The	reliance	information	shall	describe	each	interaction	in	terms	of	the	interface	used	and	the	
return	values	from	those	interfaces.	

ACO_REL.2.4C	

The	reliance	information	shall	describe	how	the	dependent	TSF	protects	itself	from	interference	and	
tampering	by	the	base	component.	

Evaluator	action	elements	

ACO_REL.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	
15.5 Composed	TOE	testing	(ACO_CTT)	

15.5.1 Objectives	

This	family	requires	that	testing	of	composed	TOE	and	testing	of	the	base	component,	as	used	in	the	
composed	TOE,	is	performed.	
15.5.2 Component	levelling	

The	components	 in	 this	 family	are	 levelled	on	 the	basis	of	 increasing	rigour	of	 interface	 testing	and	
increasing	rigour	of	the	analysis	of	the	sufficiency	of	the	tests	to	demonstrate	that	the	composed	TSF	
operates	in	accordance	with	the	reliance	information	and	the	composed	TOE	SFRs.	
15.5.3 Application	notes	

There	are	two	distinct	aspects	of	testing	associated	with	this	family:	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 148	
	

	

a)	 testing	of	 the	 interfaces	between	the	base	component	and	the	dependent	component,	which	the	
dependent	component	reliesy	upon	for	enforcement	of	security	functionality,	to	demonstrate	their	
compatibility;	

b)	 testing	of	the	composed	TOE	to	demonstrate	that	the	TOE	behaves	in	accordance	with	the	SFRs	for	
the	composed	TOE.	

If	the	test	configurations	used	during	evaluation	of	the	dependent	component	included	use	of	the	base	
component	 as	 a	 “platform”	 and	 the	 test	 analysis	 sufficiently	 demonstrates	 that	 the	 TSF	 behaves	 in	
accordance	 with	 the	 SFRs,	 the	 developer	 need	 perform	 no	 further	 testing	 of	 the	 composed	 TOE	
functionality.	 However,	 if	 the	 base	 component	 was	 not	 used	 in	 the	 testing	 of	 the	 dependent	
component,	or	the	configuration	of	either	component	varied,	then	the	developer	is	to	perform	testing	
of	 the	 composed	 TOE.	 This	 may	 take	 the	 form	 of	 repeating	 the	 dependent	 component	 developer	
testing	of	the	dependent	component,	provided	this	adequately	demonstrates	the	composed	TOE	TSF	
behaves	in	accordance	with	the	SFRs.	

The	 developer	 is	 to	 provide	 evidence	 of	 testing	 the	 base	 component	 interfaces	 used	 in	 the	
composition.	The	operation	of	base	component	TSFIs	would	have	been	tested	as	part	of	the	ATE:	Tests	
activities	 during	 evaluation	 of	 the	 base	 component.	 Therefore,	 provided	 the	 appropriate	 interfaces	
were	 included	within	 the	 test	 sample	 of	 the	 base	 component	 evaluation	 and	 it	 was	 determined	 in	
Composition	rationale	(ACO_COR)	that	the	base	component	is	operating	in	accordance	with	the	base	
component	 evaluated	 configuration,	 with	 all	 security	 functionality	 required	 by	 the	 dependent	
component	included	in	the	TSF,	the	evaluator	action	ACO_CTT.1.1E	may	be	met	through	reuse	of	the	
base	component	ATE:	Tests	verdicts.	

If	this	is	not	the	case,	the	base	component	interfaces	used	relevant	to	the	composition	that	are	affected	
by	any	variations	to	the	evaluated	configuration	and	any	additional	security	functionally	will	be	tested	
to	 ensure	 they	 demonstrate	 the	 expected	 behaviour.	 The	 expected	 behaviour	 to	 be	 tested	 is	 that	
described	in	the	reliance	information	(Reliance	of	dependent	component	(ACO_REL)	evidence).	
15.5.4 ACO_CTT.1	Interface	testing	

Dependencies:	 ACO_REL.1	Basic	reliance	information	

	 ACO_DEV.1	Functional	Description	
Objectives	

The	objective	of	this	component	is	to	ensure	that	each	interface	of	the	base	component,	on	which	the	
dependent	component	relies,	is	tested.	

Developer	action	elements	

ACO_CTT.1.1D	

The	developer	shall	provide	composed	TOE	test	documentation.	

ACO_CTT.1.2D	

The	developer	shall	provide	base	component	interface	test	documentation.	

ACO_CTT.1.3D	

The	developer	shall	provide	the	composed	TOE	for	testing.	

ACO_CTT.1.4D	

The	developer	shall	provide	an	equivalent	set	of	resources	to	those	that	were	used	in	the	base	
component	developer's	functional	testing	of	the	base	component.	

Content	and	presentation	elements	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 149	
	

	

ACO_CTT.1.1C	

The	 composed	 TOE	 and	 base	 component	 interface	 test	 documentation	 shall	 consist	 of	 test	
plans,	expected	test	results	and	actual	test	results.	

ACO_CTT.1.2C	

The	 test	 documentation	 from	 the	 developer	 execution	 of	 the	 composed	 TOE	 tests	 shall	
demonstrate	that	the	TSF	behaves	as	specified.	

ACO_CTT.1.3C	

The	 test	 documentation	 from	 the	developer	 execution	 of	 the	 base	 component	 interface	 tests	
shall	demonstrate	that	the	base	component	interface	relied	upon	by	the	dependent	component	
behaves	as	specified.	

ACO_CTT.1.4C	

The	base	component	shall	be	suitable	for	testing.	

Evaluator	action	elements	

ACO_CTT.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ACO_CTT.1.2E	

The	evaluator	shall	execute	a	sample	of	test	in	the	test	documentation	to	verify	the	developer	
test	results.	

ACO_CTT.1.3E	

The	evaluator	shall	test	a	subset	of	the	TSF	interfaces	of	the	composed	TOE	to	confirm	that	the	
composed	TSF	operates	as	specified.	
15.5.5 ACO_CTT.2	Rigorous	interface	testing	

Dependencies:	 ACO_REL.2	Reliance	information	

	 ACO_DEV.2	Basic	evidence	of	design	
Objectives	

The	objective	of	this	component	is	to	ensure	that	each	interface	of	the	base	component,	on	which	the	
dependent	component	relies,	is	tested.	

Developer	action	elements	

ACO_CTT.2.1D	

The	developer	shall	provide	composed	TOE	test	documentation.	

ACO_CTT.2.2D	

The	developer	shall	provide	base	component	interface	test	documentation.	

ACO_CTT.2.3D	

The	developer	shall	provide	the	composed	TOE	for	testing.	

ACO_CTT.2.4D	

The	 developer	 shall	 provide	 an	 equivalent	 set	 of	 resources	 to	 those	 that	 were	 used	 in	 the	 base	
component	developer's	functional	testing	of	the	base	component.	

Content	and	presentation	elements	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 150	
	

	

ACO_CTT.2.1C	

The	 composed	 TOE	 and	 base	 component	 interface	 test	 documentation	 shall	 consist	 of	 test	 plans,	
expected	test	results	and	actual	test	results.	

ACO_CTT.2.2C	

The	 test	documentation	 from	the	developer	execution	of	 the	composed	TOE	tests	shall	demonstrate	
that	the	TSF	behaves	as	specified	and	is	complete.	

ACO_CTT.2.3C	

The	 test	 documentation	 from	 the	 developer	 execution	 of	 the	 base	 component	 interface	 tests	 shall	
demonstrate	that	the	base	component	interface	relied	upon	by	the	dependent	component	behaves	as	
specified	and	is	complete.	

ACO_CTT.2.4C	

The	base	component	shall	be	suitable	for	testing.	

Evaluator	action	elements	

ACO_CTT.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ACO_CTT.2.2E	

The	 evaluator	 shall	 execute	 a	 sample	 of	 test	 in	 the	 test	 documentation	 to	 verify	 the	 developer	 test	
results.	

ACO_CTT.2.3E	

The	 evaluator	 shall	 test	 a	 subset	 of	 the	 TSF	 interfaces	 of	 the	 composed	 TOE	 to	 confirm	 that	 the	
composed	TSF	operates	as	specified.	

15.6 Composition	vulnerability	analysis	(ACO_VUL)	

15.6.1 Objectives	

This	 family	 calls	 for	 an	 analysis	 of	 vulnerability	 information	 available	 in	 the	 public	 domain	 and	 of	
vulnerabilities	that	may	be	introduced	as	a	result	of	the	composition.	
15.6.2 Component	levelling	

The	 components	 in	 this	 family	 are	 levelled	 on	 the	 basis	 of	 increasing	 scrutiny	 of	 vulnerability	
information	from	the	public	domain	and	independent	vulnerability	analysis.	
15.6.3 Application	notes	

The	 developer	will	 provide	 details	 of	 any	 residual	 vulnerabilities	 reported	 during	 evaluation	 of	 the	
components.	 These	 may	 be	 gained	 from	 the	 component	 developers	 or	 evaluation	 reports	 for	 the	
components.	These	will	be	used	as	inputs	into	the	evaluator's	vulnerability	analysis	of	the	composed	
TOE	in	the	operational	environment.	

The	operational	environment	of	 the	composed	TOE	is	examined	to	ensure	that	 the	assumptions	and	
objectives	for	the	component	operational	environment	(specified	in	each	component	ST)	are	satisfied	
in	the	composed	TOE.	An	initial	analysis	of	the	consistency	of	assumptions	and	objectives	between	the	
components	 and	 the	 composed	 TOE	 STs	 will	 have	 been	 performed	 during	 the	 conduct	 of	 the	 ASE	
activities	 for	 the	 composed	 TOE.	 However,	 this	 analysis	 is	 revisited	 with	 the	 knowledge	 acquired	
during	the	ACO_REL,	ACO_DEV	and	the	ACO_COR	activities	to	ensure	that,	for	example,	assumptions	of	
the	dependent	component	that	were	addressed	by	the	environment	in	the	dependent	component	ST	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 151	
	

	

are	not	reintroduced	as	a	result	of	composition	(i.e.	that	the	base	component	adequately	addresses	the	
assumptions	of	the	dependent	component	ST	in	the	composed	TOE).	

A	search	by	the	evaluator	for	issues	in	each	component	will	identify	potential	vulnerabilities	reported	
in	 the	 public	 domain	 since	 completion	 of	 the	 evaluation	 of	 the	 components.	 Any	 potential	
vulnerabilities	will	then	be	subject	to	testing.	

If	 the	 base	 component	 used	 in	 the	 composed	 TOE	 has	 been	 the	 subject	 of	 assurance	 continuity	
activities	 since	 certification,	 the	 evaluator	 will	 consider	 during	 the	 composed	 TOE	 vulnerability	
analysis	activities	the	changes	made	in	base	component.	
15.6.4 ACO_VUL.1	Composition	vulnerability	review	

Dependencies:	ACO_DEV.1	Functional	Description	

Developer	action	elements	

ACO_VUL.1.1D	

The	developer	shall	provide	the	composed	TOE	for	testing.	

Content	and	presentation	elements	

ACO_VUL.1.1C	

The	composed	TOE	shall	be	suitable	for	testing.	

Evaluator	action	elements	

ACO_VUL.1.1E	

The	evaluator	shall	confirm	that	the	information	provided	meets	all	requirements	for	content	
and	presentation	of	evidence.	

ACO_VUL.1.2E	

The	 evaluator	 shall	 perform	 an	 analysis	 to	 determine	 that	 any	 residual	 vulnerabilities	
identified	for	the	base	and	dependent	components	are	not	exploitable	in	the	composed	TOE	in	
its	operational	environment.	

ACO_VUL.1.3E	

The	 evaluator	 shall	 perform	 a	 search	 of	 public	 domain	 sources	 to	 identify	 possible	
vulnerabilities	arising	from	use	of	the	base	and	dependent	components	in	the	composed	TOE	
operational	environment.	

ACO_VUL.1.4E	

The	 evaluator	 shall	 conduct	 penetration	 testing,	 based	 on	 the	 identified	 vulnerabilities,	 to	
demonstrate	 that	 the	 composed	 TOE	 is	 resistant	 to	 attacks	 by	 an	 attacker	with	 basic	 attack	
potential.	
15.6.5 ACO_VUL.2	Composition	vulnerability	analysis	

Dependencies:	ACO_DEV.2	Basic	evidence	of	design	

Developer	action	elements	

ACO_VUL.2.1D	

The	developer	shall	provide	the	composed	TOE	for	testing.	

Content	and	presentation	elements	

ACO_VUL.2.1C	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 152	
	

	

The	composed	TOE	shall	be	suitable	for	testing.	

Evaluator	action	elements	

ACO_VUL.2.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ACO_VUL.2.2E	

The	evaluator	 shall	perform	an	analysis	 to	determine	 that	 any	 residual	 vulnerabilities	 identified	 for	
the	 base	 and	 dependent	 components	 are	 not	 exploitable	 in	 the	 composed	 TOE	 in	 its	 operational	
environment.	

ACO_VUL.2.3E	

The	 evaluator	 shall	 perform	 a	 search	 of	 public	 domain	 sources	 to	 identify	 possible	 vulnerabilities	
arising	 from	 use	 of	 the	 base	 and	 dependent	 components	 in	 the	 composed	 TOE	 operational	
environment.	

ACO_VUL.2.4E	

The	evaluator	shall	perform	an	independent	vulnerability	analysis	of	the	composed	TOE,	using	
the	 guidance	 documentation,	 reliance	 information	 and	 composition	 rationale	 to	 identify	
potential	vulnerabilities	in	the	composed	TOE.	

ACO_VUL.2.5E	

The	evaluator	shall	conduct	penetration	testing,	based	on	the	identified	vulnerabilities,	to	demonstrate	
that	the	composed	TOE	is	resistant	to	attacks	by	an	attacker	with	basic	attack	potential.	
15.6.6 ACO_VUL.3	Enhanced-Basic	Composition	vulnerability	analysis	

Dependencies:	ACO_DEV.3	Detailed	evidence	of	design	

Developer	action	elements	

ACO_VUL.3.1D	

The	developer	shall	provide	the	composed	TOE	for	testing.	

Content	and	presentation	elements	

ACO_VUL.3.1C	

The	composed	TOE	shall	be	suitable	for	testing.	

Evaluator	action	elements	

ACO_VUL.3.1E	

The	 evaluator	 shall	 confirm	 that	 the	 information	 provided	meets	 all	 requirements	 for	 content	 and	
presentation	of	evidence.	

ACO_VUL.3.2E	

The	evaluator	 shall	perform	an	analysis	 to	determine	 that	 any	 residual	 vulnerabilities	 identified	 for	
the	 base	 and	 dependent	 components	 are	 not	 exploitable	 in	 the	 composed	 TOE	 in	 its	 operational	
environment.	

ACO_VUL.3.3E	

The	 evaluator	 shall	 perform	 a	 search	 of	 public	 domain	 sources	 to	 identify	 possible	 vulnerabilities	
arising	 from	 use	 of	 the	 base	 and	 dependent	 components	 in	 the	 composed	 TOE	 operational	
environment.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 153	
	

	

ACO_VUL.3.4E	

The	 evaluator	 shall	 perform	 an	 independent	 vulnerability	 analysis	 of	 the	 composed	 TOE,	 using	 the	
guidance	 documentation,	 reliance	 information	 and	 composition	 rationale	 to	 identify	 potential	
vulnerabilities	in	the	composed	TOE.	

ACO_VUL.3.5E	

The	evaluator	shall	conduct	penetration	testing,	based	on	the	identified	vulnerabilities,	to	demonstrate	
that	the	composed	TOE	is	resistant	to	attacks	by	an	attacker	with	Enhanced-Basic	attack	potential.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 154	
	

	

Annex	A	
(informative)	

	
Development	(ADV)	

This	 annex	 contains	 ancillary	 material	 to	 further	 explain	 and	 provide	 additional	 examples	 for	 the	
topics	brought	up	in	families	of	the	ADV:	Development	class.	

A.1 ADV_ARC:	Supplementary	material	on	security	architectures	

A	 security	 architecture	 is	 a	 set	 of	 properties	 that	 the	 TSF	 exhibits;	 these	 properties	 include	 self-
protection,	 domain	 separation,	 and	 non-bypassability.	 Having	 these	 properties	 provides	 a	 basis	 of	
confidence	that	the	TSF	is	providing	its	security	services.	This	annex	provides	additional	material	on	
these	properties,	as	well	as	discussion	on	contents	of	a	security	architecture	description.	

The	remainder	of	 this	clause	 first	explains	 these	properties,	 then	discusses	 the	kinds	of	 information	
that	are	needed	to	describe	how	the	TSF	exhibits	those	properties.	

A.1.1 Security	architecture	properties	

Self-protection	refers	to	the	ability	of	the	TSF	to	protect	itself	from	manipulation	from	external	entities	
that	 may	 result	 in	 changes	 to	 the	 TSF.	 Without	 these	 properties,	 the	 TSF	 might	 be	 disabled	 from	
performing	its	security	services.	

It	is	oftentimes	the	case	that	a	TOE	uses	services	or	resources	supplied	by	other	IT	entities	in	order	to	
perform	 its	 functions	 (e.g.	 an	application	 that	 relies	upon	 its	underlying	operating	system).	 In	 these	
cases,	the	TSF	does	not	protect	itself	entirely	on	its	own,	because	it	depends	on	the	other	IT	entities	to	
protect	the	services	it	uses.	

Domain	separation	is	a	property	whereby	the	TSF	creates	separate	security	domains	for	each	untrusted	
active	entity	to	operate	on	its	resources,	and	then	keeps	those	domains	separated	from	one	another	so	
that	no	entity	can	run	 in	the	domain	of	any	other.	For	example,	an	operating	system	TOE	supplies	a	
domain	 (address	 space,	 per-process	 environment	 variables)	 for	 each	 process	 associated	 with	
untrusted	entities.	

For	 some	 TOEs	 such	 domains	 do	 not	 exist	 because	 all	 of	 the	 actions	 of	 the	 untrusted	 entities	 are	
brokered	by	the	TSF.	A	packet-filter	firewall	is	an	example	of	such	a	TOE,	where	there	are	no	untrusted	
entity	domains;	there	are	only	data	structures	maintained	by	the	TSF.	The	existence	of	domains,	then,	
is	dependant	upon	1)	the	type	of	TOE	and	2)	the	SFRs	levied	on	the	TOE.	In	the	cases	where	the	TOE	
does	provide	domains	for	untrusted	entities,	this	family	requires	that	those	domains	are	isolated	from	
one	 another	 such	 that	 untrusted	 entities	 in	 one	 domain	 are	 prevented	 from	 tampering	 (affecting	
without	brokering	by	the	TSF)	from	another	untrusted	entity's	domain.	

Non-bypassability	 is	a	property	that	the	security	functionality	of	the	TSF	(as	specified	by	the	SFRs)	is	
always	 invoked	 and	 cannot	 be	 circumvented	 when	 appropriate	 for	 that	 specific	 mechanism.	 For	
example,	 if	access	control	to	files	 is	specified	as	a	capability	of	the	TSF	via	an	SFR,	there	must	be	no	
interfaces	through	which	files	can	be	accessed	without	invoking	the	TSF's	access	control	mechanism	
(an	interface	through	which	a	raw	disk	access	takes	place	might	be	an	example	of	such	an	interface).	

As	 is	 the	 case	 with	 self-protection,	 the	 very	 nature	 of	 some	 TOEs	 might	 depend	 upon	 their	
environments	to	play	a	role	in	non-bypassability	of	the	TSF.	For	example,	a	security	application	TOE	
requires	that	it	be	invoked	by	the	underlying	operating	system.	Similarly,	a	firewall	depends	upon	the	
fact	that	there	are	no	direct	connections	between	the	internal	and	external	networks	and	that	all	traffic	
between	them	must	go	through	the	firewall.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 155	
	

	

A.1.2 Security	architecture	descriptions	

The	 security	 architecture	description	explains	how	 the	properties	described	above	are	 exhibited	by	
the	TSF.	It	describes	how	domains	are	defined	and	how	the	TSF	keeps	them	separate.	It	describes	what	
prevents	untrusted	processes	from	getting	to	the	TSF	and	modifying	it.	It	describes	what	ensures	that	
all	resources	under	the	TSF's	control	are	adequately	protected	and	that	all	actions	related	to	the	SFRs	
are	mediated	by	the	TSF.	It	explains	any	role	the	environment	plays	in	any	of	these	(e.g.	presuming	it	
gets	correctly	invoked	by	its	underlying	environment,	how	are	its	security	functions	invoked?).	

The	 security	 architecture	 description	 presents	 the	 TSF's	 properties	 of	 self-protection,	 domain	
separation,	 and	 non-bypassability	 in	 terms	 of	 the	 decomposition	 descriptions.	 The	 level	 of	 this	
description	 is	 commensurate	 with	 the	 TSF	 description	 required	 by	 the	 ADV_FSP,	 ADV_TDS	 and	
ADV_IMP	 requirements	 that	 are	being	 claimed.	For	example,	 if	ADV_FSP	 is	 the	only	TSF	description	
available,	 it	 would	 be	 difficult	 to	 provide	 any	meaningful	 security	 architecture	 description	 because	
none	of	the	details	of	any	internal	workings	of	the	TSF	would	be	available.	

However,	if	the	TOE	design	were	also	available,	even	at	the	most	basic	level	(ADV_TDS.1),	there	would	
be	some	information	available	concerning	the	subsystems	that	make	up	the	TSF,	and	there	would	be	a	
description	of	how	they	work	to	implement	self-protection,	domain	separation,	and	non-bypassability.	
For	example,	perhaps	all	user	interaction	with	the	TOE	is	constrained	through	a	process	that	acts	on	
that	user's	behalf,	adopting	all	of	 the	user's	security	attributes;	 the	security	architecture	description	
would	describe	how	such	a	process	comes	into	being,	how	the	process's	behaviour	is	constrained	by	
the	 TSF	 (so	 it	 cannot	 corrupt	 the	 TSF),	 how	 all	 actions	 of	 that	 process	 are	 mediated	 by	 the	 TSF	
(thereby	explaining	why	the	TSF	cannot	be	bypassed),	etc.	

If	 the	 available	 TOE	 design	 is	 more	 detailed	 (e.g.	 at	 the	 modular	 level),	 or	 the	 implementation	
representation	is	also	available,	then	the	security	architecture	description	would	be	correspondingly	
more	detailed,	explaining	how	the	user's	process	communicate	with	the	TSF	processes,	how	different	
requests	 are	 processed	 by	 the	 TSF,	 what	 parameters	 are	 passed,	 what	 programmatic	 protections	
(buffer	overflow	prevention,	parameter	bounds	checking,	time	of	check/time	of	use	checking,	etc.)	are	
in	place.	Similarly,	a	TOE	whose	ST	claimed	the	ADV_IMP	component	would	go	into	implementation-
specific	detail.	

The	 explanations	 provided	 in	 the	 security	 architecture	 description	 are	 expected	 to	 be	 of	 sufficient	
detail	 that	 one	would	be	 able	 to	 test	 their	 accuracy.	 That	 is,	 simple	 assertions	 (e.g.	 “The	TSF	 keeps	
domains	 separate”)	 provide	 no	 useful	 information	 to	 convince	 the	 reader	 that	 the	TSF	 does	 indeed	
create	and	separate	domains.	

A.1.2.1 Domain	Separation	

In	 cases	 where	 the	 TOE	 exhibits	 domain	 separation	 entirely	 on	 its	 own,	 there	 would	 be	 a	
straightforward	 description	 of	 how	 this	 is	 attained.	 The	 security	 architecture	 description	 would	
explain	 the	 different	 kinds	 of	 domains	 that	 are	 defined	by	 the	TSF,	 how	 they	 are	 defined	 (i.e.	what	
resources	are	allocated	to	each	domain),	how	no	resources	are	left	unprotected,	and	how	the	domains	
are	 kept	 separated	 so	 that	 active	 entities	 in	 one	 domain	 cannot	 tamper	with	 resources	 in	 another	
domain.	

For	 cases	where	 the	 TOE	 depends	 upon	 other	 IT	 entities	 to	 play	 a	 role	 in	 domain	 separation,	 that	
sharing	of	roles	must	be	made	clear.	For	example,	a	TOE	that	is	solely	application	software	relies	upon	
the	underlying	operating	system	to	correctly	instantiate	the	domains	that	the	TOE	defines;	if	the	TOE	
defines	 separate	 processing	 space,	 memory	 space,	 etc,	 for	 each	 domain,	 it	 depends	 upon	 the	
underlying	operating	system	to	operate	correctly	and	benignly	(e.g.	allow	the	process	to	execute	only	
in	the	execution	space	that	is	requested	by	the	TOE	software).	

For	 example,	mechanisms	 that	 implement	 domain	 separation	 (e.g.	memory	management,	 protected	
processing	 modes	 provided	 by	 the	 hardware,	 etc.)	 would	 be	 identified	 and	 described.	 Or,	 the	 TSF	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 156	
	

	

might	 implement	 software	 protection	 constructs	 or	 coding	 conventions	 that	 contribute	 to	
implementing	separation	of	software	domains,	perhaps	by	delineating	user	address	space	from	system	
address	space.	

The	vulnerability	analysis	and	testing	(see	AVA_VAN)	activities	will	 likely	 include	attempts	to	defeat	
the	described	TSF	domain	separation	through	the	use	of	monitoring	or	direct	attack	the	TSF.	

A.1.2.2 TSF	Self-protection	

In	cases	where	the	TOE	exhibits	self-protection	entirely	on	its	own,	there	would	be	a	straightforward	
description	 of	 how	 this	 self-protection	 is	 attained.	 Mechanisms	 that	 provide	 domain	 separation	 to	
define	a	TSF	domain	that	is	protected	from	other	(user)	domains	would	be	identified	and	described.	

For	cases	where	the	TOE	depends	upon	other	IT	entities	to	play	a	role	in	protecting	itself,	that	sharing	
of	 roles	must	be	made	 clear.	 For	 example,	 a	TOE	 that	 is	 solely	 application	 software	 relies	upon	 the	
underlying	operating	 system	 to	operate	 correctly	and	benignly;	 the	application	 cannot	protect	 itself	
against	a	malicious	operating	system	that	subverts	it	(for	example,	by	overwriting	its	executable	code	
or	TSF	data).	

The	security	architecture	description	also	covers	how	user	input	is	handled	by	the	TSF	in	such	a	way	
that	the	TSF	does	not	subject	itself	to	being	corrupted	by	that	user	input.	For	example,	the	TSF	might	
implement	the	notion	of	privilege	and	protect	itself	by	using	privileged-mode	routines	to	handle	user	
data.	 The	 TSF	 might	 make	 use	 of	 processor-based	 separation	 mechanisms	 (e.g.	 privilege	 levels	 or	
rings)	 to	 separate	 TSF	 code	 and	 data	 from	user	 code	 and	 data.	 The	TSF	might	 implement	 software	
protection	constructs	or	coding	conventions	that	contribute	to	 implementing	separation	of	software,	
perhaps	by	delineating	user	address	space	from	system	address	space.	

For	 TOEs	 that	 start	 up	 in	 a	 low-function	mode	 (for	 example,	 a	 single-user	mode	 accessible	 only	 to	
installers	 or	 administrators)	 and	 then	 transition	 to	 the	 evaluated	 secure	 configuration	 (a	 mode	
whereby	untrusted	users	are	able	to	login	and	use	the	services	and	resources	of	the	TOE),	the	security	
architecture	 description	 also	 includes	 an	 explanation	 of	 how	 the	 TSF	 is	 protected	 against	 this	
initialisation	 code	 that	 does	 not	 run	 in	 the	 evaluated	 configuration.	 For	 such	 TOEs,	 the	 security	
architecture	 description	 would	 explain	 what	 prevents	 those	 services	 that	 should	 be	 available	 only	
during	 initialisation	 (e.g.	 direct	 access	 to	 resources)	 from	 being	 accessible	 in	 the	 evaluated	
configuration.	It	would	also	explain	what	prevents	initialisation	code	from	running	while	the	TOE	is	in	
the	evaluated	configuration.	

There	must	also	be	an	explanation	of	how	the	trusted	initialisation	code	will	maintain	the	integrity	of	
the	 TSF	 (and	 of	 its	 initialisation	 process)	 such	 that	 the	 initialisation	 process	 is	 able	 to	 detect	 any	
modification	that	would	result	in	the	TSF	being	spoofed	into	believe	it	was	in	an	initial	secure	state.	

The	vulnerability	analysis	and	testing	(see	AVA_VAN)	activities	will	 likely	 include	attempts	to	defeat	
the	described	TSF	 self-	 protection	 through	 the	use	of	 tampering,	 direct	 attack,	 or	monitoring	of	 the	
TSF.	

A.1.2.3 TSF	Non-Bypassability	

The	 property	 of	 non-bypassability	 is	 concerned	 with	 interfaces	 that	 permit	 the	 bypass	 of	 the	
enforcement	 mechanisms.	 In	 most	 cases	 this	 is	 a	 consequence	 of	 the	 implementation,	 where	 if	 a	
programmer	 is	writing	 an	 interface	 that	 accesses	 or	manipulates	 an	 object,	 it	 is	 that	 programmer's	
responsibility	to	use	interfaces	that	are	part	of	the	SFR	enforcement	mechanism	for	the	object	and	not	
to	try	to	circumvent	those	interfaces.	For	the	description	pertaining	to	non-bypassability,	then,	there	
are	two	broad	areas	that	have	to	be	covered.	

The	first	consists	of	those	interfaces	to	the	SFR-enforcement.	The	property	for	these	interfaces	is	that	
they	contain	no	operations	or	modes	that	allow	them	to	be	used	to	bypass	the	TSF.	It	is	likely	that	the	
evidence	 for	ADV_FSP	 and	ADV_TDS	 can	be	used	 in	 large	part	 to	make	 this	 determination.	Because	
non-bypassability	 is	 the	 concern,	 if	 only	 certain	 operations	 available	 through	 these	 TSFIs	 are	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 157	
	

	

documented	 (because	 they	 are	 SFR-enforcing)	 and	 others	 are	 not,	 the	 developer	 should	 consider	
whether	additional	information	(to	that	presented	in	ADV_FSP	and	ADV_TDS)	is	necessary	to	make	a	
determination	that	 the	SFR-supporting	and	SFR-non-interfering	operations	of	 the	TSFI	do	not	afford	
an	untrusted	entity	the	ability	to	bypass	the	policy	being	enforced.	If	such	information	is	necessary,	it	
is	included	in	the	security	architecture	description.	

The	second	area	of	non-bypassability	 is	 concerned	with	 those	 interfaces	whose	 interactions	are	not	
associated	 with	 SFR-enforcement.	 Depending	 on	 the	 ADV_FSP	 and	 ADV_TDS	 components	 claimed,	
some	information	about	these	interfaces	may	or	may	not	exist	in	the	functional	specification	and	TOE	
design	documentation.	The	information	presented	for	such	interfaces	(or	groups	of	interfaces)	should	
be	sufficient	so	that	a	reader	can	make	a	determination	(at	the	level	of	detail	commensurate	with	the	
rest	of	the	evidence	supplied	in	the	ADV:	Development	class)	that	the	enforcement	mechanisms	cannot	
be	bypassed.	

The	property	 that	 the	 security	 functionality	 cannot	 be	bypassed	 applies	 to	 all	 security	 functionality	
equally.	That	 is,	 the	design	description	 should	 cover	objects	 that	 are	protected	under	 the	SFRs	 (e.g.	
FDP_*	components)	and	functionality	(e.g.	audit)	that	is	provided	by	the	TSF.	The	description	should	
also	identify	the	interfaces	that	are	associated	with	security	functionality;	this	might	make	use	of	the	
information	 in	 the	 functional	 specification.	 This	 description	 should	 also	 describe	 any	 design	
constructs,	 such	 as	 object	managers,	 and	 their	method	 of	 use.	 For	 instance,	 if	 routines	 are	 to	 use	 a	
standard	macro	to	produce	an	audit	record,	this	convention	is	a	part	of	the	design	that	contributes	to	
the	 non-bypassability	 of	 the	 audit	mechanism.	 It	 is	 important	 to	 note	 that	non-bypassability	 in	 this	
context	is	not	an	attempt	to	answer	the	question	“could	a	part	of	the	TSF	implementation,	if	malicious,	
bypass	 the	security	 functionality”,	but	rather	 to	document	how	the	 implementation	does	not	bypass	
the	security	functionality.	

The	vulnerability	analysis	and	testing	(see	AVA_VAN)	activities	will	 likely	 include	attempts	to	defeat	
the	described	non-bypassability	by	circumventing	the	TSF.	

A.2 ADV_FSP:	Supplementary	material	on	functional	specification	

The	 purpose	 in	 specifying	 the	 TSFIs	 is	 to	 provide	 the	 necessary	 information	 to	 conduct	 testing;	
without	knowing	the	possible	means	interact	with	the	TSF,	one	cannot	adequately	test	the	behaviour	
of	the	TSF.	

There	 are	 two	 parts	 to	 specifying	 the	 TSFIs:	 identifying	 them	 and	 describing	 them.	 Because	 of	 the	
diversity	 of	 possible	TOEs,	 and	 of	 different	TSFs	 therein,	 there	 is	 no	 standard	 set	 of	 interfaces	 that	
constitute	 “TSFIs”.	This	annex	provides	guidance	on	 the	 factors	 that	determine	which	 interfaces	are	
TSFIs.	

A.2.1 Non-TSF	part	of	the	TOE	

The	 TSF	 comprises	 all	 parts	 of	 the	 TOE	 the	 user	 has	 to	 rely	 on	 in	 order	 to	 trust	 the	 security	
functionality.	

To	say	it	in	other	words:	Those	parts	of	the	TOE	that	do	not	belong	to	the	TSF	can	be	modified	by	an	
attacker	without	any	impact	on	the	TOE	security	functionality.	If	this	isn’t	the	case,	these	parts	of	the	
TOE	have	to	be	included	in	the	TSF.	

If	the	TSF	and	the	TSF	implementation	are	defined	then	it	is	clear	whether	there	exist	further	parts	of	
the	TOE	which	can	be	classified	as	non-TSF	parts	of	the	TOE.	Such	parts	do	not	have	to	be	part	of	the	
TSF	but	they	are	still	part	of	the	TOE.	

The	 relationship	 between	 TSF	 and	 non-TSF	 parts	 of	 TOE	 is	 given	 by	 their	 definitions	 and	 the	 ARC	
properties	as	follows:	

—	 non-TSF	parts	do	not	bypass	the	TSF	and	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 158	
	

	

—	 parts	of	the	TSF	protects	themselves	against	tampering.	

A	subsystem	of	the	TOE	which	is	not	part	of	the	TSF	has	to	fulfil	the	following	condition	(described	as	a	
rule	 of	 thumb12):	 The	 subsystem	 must	 not	 have	 any	 security	 impact	 of	 the	 TOE	 even	 if	 it	 were	
substituted	by	an	attacker.	

Therefore,	 between	 the	 Non-TSF	 parts	 and	 the	 TSF	 parts	 it	 seems	 that	 some	 kind	 of	 “separation	
mechanism”	 is	 advisable13	 because	 such	 “separation	 mechanism”	 may	 build	 the	 basis	 for	 the	
assessment	that	there	is	no	impact	on	the	TSF	parts	from	the	Non-TSF	parts	possible.	

Such	 “separation	mechanism”	could	be	 implemented	by	 the	 security	architecture	or	by	an	explicitly	
realized	part	of	the	implementation	(e.g.	a	firewall	between	TSF	and	Non-TSF	parts	of	the	TOE).	

The	analysis	of	the	“separation	mechanism”	is	then	subject	of	the	vulnerability	assessment	because	it	
must	withstand	 attacks	 by	 an	 attacker	 of	 the	 respective	 strength	 according	 to	 the	 VAN	 level	 of	 the	
evaluation.	

The	 developer	 shall	 provide	 evidence	 for	 non-bypassability	 and	 self-protection	 in	 its	 security	
architecture	 description	 and	 the	 evaluator	 shall	 analyse	 this	 evidence	 in	 subactivity	 for	 ADV_ARC.1	
and	assess	the	effectiveness	in	the	vulnerability	assessment.	

The	 goal	 of	 TOE	 design	 documentation	 is	 to	 provide	 sufficient	 information	 to	 determine	 the	 TSF	
boundary,	and	to	describe	how	the	TSF	 implements	the	SFR.	Further	attention	 is	needed	by	the	 fact	
that	 the	 family	 ADV_TDS	 requires	 only	 identification	 of	 the	 non-TSF	 subsystems	 of	 the	 TOE.	 No	
interface	description	is	provided	for	these	subsystems	in	ADV_FSP	or	ADV_TDS.	SFR	non-interference	
of	these	subsystems	is	assumed	but	not	demonstrated	by	the	developer	and	not	examined	in	details	by	
the	evaluator.	However,	 from	the	TOE	design	point	of	view	this	 is	not	 that	 important	as	 long	as	 the	
above	mentioned	separation	mechanism	is	in	place	and	the	vulnerability	assessment	confirms	that	it	is	
strong	 enough.	 Therefore	 this	 “separation	 mechanism”	 implements	 the	 TSF	 or	 enforces	 ARC	
properties	 as	 security	 feature.	 But	 non-bypassability	 may	 be	 enforced	 by	 “pure	 architecture	
properties”	as	well.	

Parts	of	the	TOE	classified	as	non-TSF	must	not	provide	means	to	bypass	the	TSF	(no	matter	whether	a	
valid	 user	 or	 even	 an	 attacker	makes	uses	 of	 those	parts)	 and	must	 not	 contribute	 to	 the	TSF.	 It	 is	
important	 that	 the	 developer	 provides	 clear	 evidence	 and	 demonstrate	 how	 this	 requirement	 is	
fulfilled.	

Therefore,	the	developer	shall	demonstrate	and	the	evaluator	shall	examine	that	the	TOE	identification	
of	 subsystems	 as	 non-TSF	 (cf.	 ADV_TDS.x.1)	 is	 correct	 and	 consequently	 no	 detailed	 description	 of	
these	 subsystems	 is	 necessary.	 The	 evaluator	 examination	 shall	 include	 the	 ARC	 properties	 non-
bypassability	 and	 self-protection	 being	 described	 in	 the	 ADV_ARC	 documentation	 provided	 by	 the	
developer	(see	the	paragraphs	above).	

A.2.2 Determining	the	TSFI	

In	order	to	identify	the	interfaces	to	the	TSF,	the	parts	of	the	TOE	that	make	up	the	TSF	must	first	be	
identified.	 This	 identification	 is	 actually	 a	 part	 of	 the	 TOE	 design	 (ADV_TDS)	 analysis,	 but	 is	 also	
performed	 implicitly	 (through	 identification	 and	 description	 of	 the	 TSFI)	 by	 the	 developer	 in	 cases	
where	TOE	design	(ADV_TDS)	is	not	 included	in	the	assurance	package.	 In	this	analysis,	a	portion	of	

	

12	This	rule	is	only	valid	to	some	extent	because	the	actual	requirement	"The	Non-TSF	part	must	not	bypass	the	TSF."	is	not	
that	strong	as	the	given	rule	of	thumb.	

13	 The	 “separation	mechanism“	 is	 only	 an	 proposal	 here.	 The	 developer	 is	 free	 to	 provide	 evidence	 using	 other	 kind	 of	
security	implementation	as	long	as	the	requirement	showing	the	non-bypassablity	for	the	TSF	part	of	the	TOE	from	the	non-
TSF	part	of	the	TOE	is	fulfilled.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 159	
	

	

the	TOE	must	be	considered	to	be	in	the	TSF	if	it	contributes	to	the	satisfaction	of	an	SFR	in	the	ST	(in	
whole	or	in	part).	This	includes,	for	example,	everything	in	the	TOE	that	contributes	to	TSF	run-time	
initialisation,	 such	 as	 software	 that	 runs	 prior	 to	 the	 TSF	 being	 able	 to	 protect	 itself	 because	
enforcement	of	 the	 SFRs	has	not	 yet	begun	 (e.g.	while	booting	up).	Also	 included	 in	 the	TSF	 are	 all	
parts	 of	 the	 TOE	 that	 contribute	 to	 the	 architectural	 principles	 of	 TSF	 self-protection,	 domain	
separation,	and	non-bypassability	(see	Security	Architecture	(ADV_ARC)).	

Once	 the	 TSF	 has	 been	 defined,	 the	 TSFI	 are	 identified.	 The	 TSFI	 consists	 of	 all	 means	 by	 which	
external	entities	(or	subjects	 in	the	TOE	but	outside	of	the	TSF)	supply	data	to	the	TSF,	receive	data	
from	 the	 TSF	 and	 invoke	 services	 from	 the	 TSF.	 These	 service	 invocations	 and	 responses	 are	 the	
means	of	crossing	the	TSF	boundary.	While	many	of	these	are	readily	apparent,	others	might	not	be	as	
obvious.	 The	 question	 that	 should	 be	 asked	 when	 determining	 the	 TSFIs	 is:	 “How	 can	 a	 potential	
attacker	interact	with	the	TSF	in	an	attempt	to	subvert	the	SFRs?”	

Therefore,	from	the	evaluation	point	of	view	it	is	also	important	whether	the	interface	can	be	misused	
by	an	attacker	to	get	access	to	the	security	functionality	in	order	to	compromise	the	assets	protected	
by	TSF.	

Any	interface	of	the	TSF	which	can	be	potentially	used	by	an	attacker	belongs	to	the	TSFI	(regardless	
of	the	further	classification	as	SFR-enforcing,	SFR-supporting	or	SFR-non-interfering).	

It	 is	not	 important	whether	 the	TSF	will	 be	accessed	 from	outside	or	whether	 the	TSF	accesses	 the	
external	 resources	 (e.g.	TSF	calls	platform	or	user).	The	only	criteria	 is	whether	 there	 is	a	potential	
interference	with	the	TSF	from	outside.	

The	following	discussions	illustrate	the	application	of	the	TSFI	definition	in	different	contexts.	

A.2.2.1 Electrical	interfaces	

In	 TOEs	 such	 as	 smart	 cards,	where	 the	 adversary	 has	 not	 only	 logical	 access	 to	 the	 TOE,	 but	 also	
complete	 physical	 access	 to	 the	 TOE,	 the	 TSF	 boundary	 is	 the	 physical	 boundary.	 Therefore,	 the	
exposed	 electrical	 interfaces	 are	 considered	 TSFI	 because	 their	 manipulation	 could	 affect	 the	
behaviour	of	the	TSF.	As	such,	all	 these	 interfaces	(electrical	contacts)	need	to	be	described:	various	
voltages	that	might	be	applied,	etc.	

A.2.2.2 Network	protocol	stack	

The	 TSFIs	 of	 a	 TOE	 that	 performs	 protocol	 processing	 would	 be	 those	 protocol	 layers	 to	 which	 a	
potential	attacker	has	direct	access.	This	need	not	be	the	entire	protocol	stack,	but	it	might	be.	

For	 example,	 if	 the	TOE	were	 some	 sort	 of	 a	 network	 appliance	 that	 allowed	potential	 attackers	 to	
affect	 every	 level	 of	 the	 protocol	 stack	 (i.e.	 to	 send	 arbitrary	 signals,	 arbitrary	 voltages,	 arbitrary	
packets,	arbitrary	datagrams,	etc.),	then	the	TSF	boundary	exists	at	each	layer	of	the	stack.	Therefore,	
the	functional	specification	would	have	to	address	every	protocol	at	every	layer	of	the	stack.	

If,	 however,	 the	 TOE	 were	 was	 a	 firewall	 that	 protects	 an	 internal	 network	 from	 the	 Internet,	 a	
potential	attacker	would	have	no	means	of	directly	manipulating	the	voltages	that	enter	the	TOE;	any	
extreme	voltages	would	simply	not	be	passed	thoughthrough	the	Internet.	That	is,	the	attacker	would	
have	access	only	 to	 those	protocols	at	 the	 Internet	 layer	or	above.	The	TSF	boundary	exists	at	each	
layer	of	the	stack.	Therefore,	the	functional	specification	would	have	to	address	only	those	protocols	at	
or	above	the	Internet	layer:	it	would	describe	each	of	the	different	communication	layers	at	which	the	
firewall	is	exposed	in	terms	of	what	constitutes	well-formed	input	for	what	might	appear	on	the	line,	
and	the	result	of	both	well-formed	and	malformed	inputs.	For	example,	the	description	of	the	Internet	
protocol	layer	would	describe	what	constitutes	a	well-formed	IP	packet	and	what	happens	when	both	
correctly-formed	 and	 malformed	 packets	 are	 received.	 Likewise,	 the	 description	 of	 the	 TCP	 layer	
would	describe	a	successful	TCP	connection	and	what	happens	both	when	successful	connections	are	
established	and	when	connections	cannot	be	established	or	are	inadvertently	dropped.	Presuming	the	
firewall's	purpose	 is	 to	 filter	application-level	 commands	 (like	FTP	or	 telnet),	 the	description	of	 the	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 160	
	

	

application	layer	would	describe	the	application-level	commands	that	are	recognized	and	filtered	by	
the	firewall,	as	well	as	the	results	of	encountering	unknown	commands.	

The	descriptions	of	 these	 layers	would	 likely	 reference	published	 communication	 standards	 (telnet,	
FTP,	TCP,	etc.)	that	are	used,	noting	which	user-defined	options	are	chosen.	

A.2.2.3 Wrappers	

	

Figure	A.1	—	Wrappers	

“Wrappers”	 translate	 complex	 series	 of	 interactions	 into	 simplified	 common	 services,	 such	 as	when	
Operating	 Systems	 create	APIs	 for	 use	 by	 applications	 (as	 shown	 in	 Figure	A.1).	Whether	 the	TSFIs	
would	 be	 the	 system	 calls	 or	 the	 APIs	 depends	 upon	 what	 is	 available	 to	 the	 application:	 if	 the	
application	 can	use	 the	 system	calls	 directly,	 then	 the	 system	calls	 are	 the	TSFIs.	 If,	 however,	 there	
were	something	that	prohibits	their	direct	use	and	requires	all	communication	through	the	APIs,	then	
the	APIs	would	be	the	TSFIs.	

A	Graphical	User	 interface	 is	 similar:	 it	 translates	between	machine-understandable	 commands	and	
user-friendly	graphics.	Similarly,	the	TSFIs	would	be	the	commands	if	users	have	access	to	them,	or	the	
graphics	(pull-down	menus,	check-boxes,	text	fields)	if	the	users	are	constrained	to	using	them.	

It	 is	 worth	 noting	 that,	 in	 both	 of	 these	 examples,	 if	 the	 user	 is	 prohibited	 from	 using	 the	 more	
primitive	interfaces	(i.e.	the	system	calls	or	the	commands),	the	description	of	this	restriction	and	of	
its	 enforcement	 would	 be	 included	 in	 the	 Security	 Architecture	 Description	 (see	 A.1).	 Also,	 the	
wrapper	would	be	part	of	the	TSF.	

A.2.2.4 Inaccessible	interfaces	

For	 a	 given	 TOE,	 not	 all	 of	 the	 interfaces	may	 be	 accessible.	 That	 is,	 the	 security	 objectives	 for	 the	
operational	 environment	 (in	 the	 Security	 Target)	 may	 prevent	 access	 to	 these	 interfaces	 or	 limit	
access	 in	 such	a	way	 that	 they	are	practically	 inaccessible.	 Such	 interfaces	would	not	be	considered	
TSFIs.	Some	examples:	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 161	
	

	

a)	 If	 the	 security	objectives	 for	 the	operational	environment	 for	 the	 stand-alone	 firewall	 state	 that	
“the	firewall	will	be	operational	in	a	server	room	environment	to	which	only	trusted	and	trained	
personnel	 will	 have	 access,	 and	 which	 will	 be	 equipped	 with	 an	 interruptible	 power	 supply	
(against	power	 failure)”,	physical	 and	power	 interfaces	will	not	be	accessible,	 since	 trusted	and	
trained	personnel	will	not	attempt	to	dismantle	the	firewall	and/or	disable	its	power	supply.	

b)	 If	 the	security	objectives	 for	 the	operational	environment	 for	 the	software	 firewall	 (application)	
state	that	“the	OS	and	the	hardware	will	provide	a	security	domain	for	the	application	free	from	
tampering	by	other	programs”,	the	interfaces	through	which	the	firewall	can	be	accessed	by	other	
applications	on	the	OS	(e.g.	deleting	or	modifying	the	firewall	executable,	direct	reading	or	writing	
to	 the	memory	 space	 of	 the	 firewall)	will	 not	 be	 accessible,	 since	 the	OS/hardware	 part	 of	 the	
operational	environment	makes	this	interface	inaccessible.	

c)	 If	 the	 security	 objectives	 for	 the	 operational	 environment	 for	 the	 software	 firewall	 additionally	
state	 that	 the	 OS	 and	 hardware	will	 faithfully	 execute	 the	 commands	 of	 the	 TOE,	 and	will	 not	
tamper	 with	 the	 TOE	 in	 any	 manner,	 interfaces	 through	 which	 the	 firewall	 obtains	 primitive	
functionality	 from	 the	OS	and	hardware	 (executing	machine	 code	 instructions,	OS	APIs,	 such	as	
creating,	 reading,	 writing	 or	 deleting	 files,	 graphical	 APIs	 etc.)	 will	 not	 be	 accessible,	 since	 the	
OS/hardware	are	the	only	entities	that	can	access	that	interface,	and	they	are	completely	trusted.	

For	all	of	these	examples,	these	inaccessible	interfaces	would	not	be	TSFIs.	

A.2.3 Example:	A	complex	DBMS	

Figure	A.2	 illustrates	 a	 complex	 TOE:	 a	 database	management	 system	 that	 relies	 on	 hardware	 and	
software	 that	 is	 outside	 the	 TOE	 boundary	 (referred	 to	 as	 the	 IT	 environment	 in	 the	 rest	 of	 this	
discussion).	To	simplify	this	example,	the	TOE	is	identical	to	the	TSF.	The	shaded	boxes	represent	the	
TSF,	 while	 the	 unshaded	 boxes	 represent	 IT	 entities	 in	 the	 environment.	 The	 TSF	 comprises	 the	
database	engine	and	management	GUIs	(represented	by	the	box	labelled	DB)	and	a	kernel	module	that	
runs	as	part	of	the	OS	that	performs	some	security	function	(represented	by	the	box	labelled	PLG).	The	
TSF	kernel	module	has	entry	points	defined	by	the	OS	specification	that	the	OS	will	call	to	invoke	some	
function	 (this	 could	 be	 a	 device	 driver,	 or	 an	 authentication	 module,	 etc.).	 The	 key	 is	 that	 this	
pluggable	kernel	module	is	providing	security	services	specified	by	functional	requirements	in	the	ST.	

	

Figure	A.2	—	Interfaces	in	a	DBMS	system	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 162	
	

	

The	 IT	 environment	 consists	 of	 the	operating	 system	 itself	 (represented	by	 the	box	 labelled	OS),	 as	
well	as	an	external	server	(labelled	SRV).	This	external	server,	like	the	OS,	provides	a	service	that	the	
TSF	depends	on,	and	thus	needs	to	be	in	the	IT	environment.	Interfaces	in	the	figure	are	labelled	Ax	for	
TSFI,	and	Bx	for	other	interfaces	that	would	be	documented	in	ACO:	Composition.	Each	of	these	groups	
of	interfaces	is	now	discussed.	

Interface	 group	 A1	 represents	 the	most	 obvious	 set	 of	 TSFI.	 These	 are	 interfaces	 used	 by	 users	 to	
directly	access	the	database	and	its	security	functionality	and	resources.	

Interface	group	A2	represent	the	TSFI	that	the	OS	invokes	to	obtain	the	functionality	provided	by	the	
pluggable	 module.	 These	 are	 contrasted	 with	 interface	 group	 B3,	 which	 represent	 calls	 that	 the	
pluggable	module	makes	to	obtain	services	from	the	IT	environment.	

Interface	 group	 A3	 represent	 TSFI	 that	 pass	 through	 the	 IT	 environment.	 In	 this	 case,	 the	 DBMS	
communicates	 over	 the	 network	 using	 a	 proprietary	 application-level	 protocol.	 While	 the	 IT	
environment	 is	 responsible	 for	 providing	 various	 supporting	 protocols	 (e.g.	 Ethernet,	 IP,	 TCP),	 the	
application	 layer	 protocol	 that	 is	 used	 to	 obtain	 services	 from	 the	 DBMS	 is	 a	 TSFI	 and	 must	 be	
documented	as	such.	The	dotted	line	indicates	return	values/services	from	the	TSF	over	the	network	
connection.	

The	 interfaces	 labelled	 Bx	 represent	 interfaces	 to	 functionality	 in	 the	 IT	 eEnvironment.	 These	
interfaces	 are	 not	 TSFI	 and	 need	 only	 be	 discussed	 and	 analysed	when	 the	 TOE	 is	 being	 used	 in	 a	
composite	evaluation	as	part	of	the	activities	associated	with	the	ACO	class.	

A.2.4 Example	Functional	Specification	

The	eExample	 firewall	 is	used	between	an	 internal	network	and	an	external	network.	 It	verifies	 the	
source	 address	 of	 data	 received	 (to	 ensure	 that	 external	 data	 are	 not	 attempting	 to	masquerade	 as	
originating	from	the	internal	data);	if	it	detects	any	such	attempts,	it	saves	the	offending	attempt	to	the	
audit	log.	The	administrator	connects	to	the	firewall	by	establishing	a	telnet	connection	to	the	firewall	
from	 the	 internal	 network.	 Administrator	 actions	 consist	 of	 authenticating,	 changing	 passwords,	
reviewing	the	audit	log,	and	setting	or	changing	the	addresses	of	the	internal	and	external	networks.	

The	Example	firewall	presents	the	following	interfaces	to	the	internal	network:	

a)	 IP	datagrams	

b)	 Administrator	Commands	

and	the	following	interfaces	to	the	external	network:	

a)	 IP	datagrams	

Interfaces	Descriptions:	IP	Datagrams	

The	datagrams	are	in	the	format	specified	by	RFC	791.	

—	 Purpose	 -	 to	 transmit	 blocks	 of	 data	 (“datagrams”)	 from	 source	 hosts	 to	 destination	 hosts	
identified	 by	 fixed	 length	 addresses;	 also	 provides	 for	 fragmentation	 and	 reassembly	 of	 long	
datagrams,	if	necessary,	for	transmission	through	small-packet	networks.	

—	 Method	of	Use	-	they	arrive	from	the	lower-level	(e.g.	data	link)	protocol.	

—	 Parameters	-	the	following	fields	of	the	IP	datagram	header:	source	address,	destination	address,	
don't-fragment	flag.	

—	 Parameter	description	-	[As	defined	by	RFC	791,	subclause	3.1	(“Internet	Header	Format”)]	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 163	
	

	

—	 Actions	 -	 Transmits	 datagrams	 that	 are	 not	 masquerading;	 fragments	 large	 datagrams	 if	
necessary;	reassembles	fragments	into	datagrams.	

—	 Error	 messages	 -	 (none).	 No	 reliability	 guaranteed	 (reliability	 to	 be	 provided	 by	 upper-level	
protocols)	 Undeliverable	 datagrams	 (e.g.	 must	 be	 fragmented	 for	 transmission,	 but	 don't-
fragment	flag	is	set)	dropped.	

Interfaces	Descriptions:	Administrator	Commands	

The	 administrator	 commands	 provide	 a	 means	 for	 the	 administrator	 to	 interact	 with	 the	 firewall.	
These	commands	and	responses	ride	atop	a	telnet	(RFC	854)	connection	established	from	any	
host	on	the	internal	network.	Available	commands	are:	

—	 Passwd	

—	 Purpose	-	sets	administrator	password	

—	 Method	of	Use	-	Passwd	<	password	>	

—	 Parameters	-	password	

—	 Parameter	description	-	value	of	new	password	

—	 Actions	-	changes	password	to	new	value	supplied.	There	are	no	restrictions.	

—	 Error	messages	-	none.	

—	 Readaudit	

—	 Purpose	-	presents	the	audit	log	to	the	administrator	

—	 Method	of	Use	-	Readaudit	

—	 Parameters	-	none	

—	 Parameter	description	-	none	

—	 Actions	-	provides	the	text	of	the	audit	log	

—	 Error	messages	-	none.	

—	 Setintaddr	

—	 Purpose	-	sets	the	address	of	the	internal	address.	

—	 Method	of	Use	-	Setintaddr	<	address	>	

—	 Parameters	-	address	

—	 Parameter	 description	 -	 first	 three	 fields	 of	 an	 IP	 address	 (as	 defined	 in	 RFC	 791).	 For	
example:	123.123.123.	

—	 Actions	-	changes	the	internal	value	of	the	variable	defining	the	internal	network,	the	value	of	
which	is	used	to	judge	attempted	masquerades.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 164	
	

	

—	 Error	messages	-	“address	in	use”:	indicates	the	identified	internal	network	is	the	same	as	the	
external	network.	

—	 Setextaddr	

—	 Purpose	-	sets	the	address	of	the	external	address	

—	 Method	of	Use	-	Setextaddr	<	address	>	

—	 Parameters	-	address	

—	 Parameter	 description	 -	 first	 three	 fields	 of	 an	 IP	 address	 (as	 defined	 in	 RFC	 791).	 For	
example:	123.123.123.	

—	 Actions	-	changes	the	internal	value	of	the	variable	defining	the	external	network.	

—	 Error	messages	-	“address	in	use”:	indicates	the	identified	external	network	is	the	same	as	the	
internal	network.	

A.3 ADV_INT:	Supplementary	material	on	TSF	internals	

The	wide	variety	of	TOEs	makes	it	impossible	to	codify	anything	more	specific	than	“well-structured”	
or	“minimum	complexity”.	 Judgements	on	structure	and	complexity	are	expected	to	be	derived	from	
the	 specific	 technologies	 used	 in	 the	 TOE.	 For	 example,	 software	 is	 likely	 to	 be	 considered	 well-
structured	if	it	exhibits	the	characteristics	cited	in	the	software	engineering	disciplines.	

This	annex	provides	supplementary	material	on	assessing	the	structure	and	complexity	of	procedure-
based	software	portions	of	the	TSF.	This	material	is	based	on	information	readily	available	in	software	
engineering	 literature.	 For	other	kinds	of	 internals	 (e.g.	 hardware,	non-procedural	 software	 such	as	
object-oriented	code,	etc.),	corresponding	literature	on	good	practises	should	be	consulted.	

A.3.1 Structure	of	procedural	software	

The	 structure	 of	 procedural	 software	 is	 traditionally	 assessed	 according	 to	 its	modularity.	 Software	
written	with	a	modular	design	aids	in	achieving	understandability	by	clarifying	what	dependencies	a	
module	 has	 on	 other	modules	 (coupling)	 and	 by	 including	 in	 a	module	 only	 tasks	 that	 are	 strongly	
related	 to	 each	 other	 (cohesion).	 The	 use	 of	modular	 design	 reduces	 the	 interdependence	 between	
elements	of	the	TSF	and	thus	reduces	the	risk	that	a	change	or	error	in	one	module	will	have	effects	
throughout	 the	 TOE.	 Its	 use	 enhances	 clarity	 of	 design	 and	 provides	 for	 increased	 assurance	 that	
unexpected	 effects	 do	 not	 occur.	 Additional	 desirable	 properties	 of	 modular	 decomposition	 are	 a	
reduction	in	the	amount	of	redundant	or	unneeded	code.	

Minimising	 the	 amount	 of	 functionality	 in	 the	 TSF	 allows	 the	 evaluator	 as	well	 as	 the	 developer	 to	
focus	 only	 on	 that	 functionality	 which	 is	 necessary	 for	 SFR	 enforcement,	 contributing	 further	 to	
understandability	and	further	lowering	the	likelihood	of	design	or	implementation	errors.	

The	 incorporation	 of	 modular	 decomposition,	 layering	 and	 minimization	 into	 the	 design	 and	
implementation	 process	 must	 be	 accompanied	 by	 sound	 software	 engineering	 considerations.	 A	
practical,	useful	software	system	will	usually	entail	some	undesirable	coupling	among	modules,	some	
modules	that	include	loosely-related	functions,	and	some	subtlety	or	complexity	in	a	module's	design.	
These	 deviations	 from	 the	 ideals	 of	modular	 decomposition	 are	 often	 deemed	necessary	 to	 achieve	
some	goal	or	constraint,	be	 it	 related	 to	performance,	 compatibility,	 future	planned	 functionality,	or	
some	other	factors,	and	may	be	acceptable,	based	on	the	developer's	justification	for	them.	In	applying	
the	 requirements	 of	 this	 class,	 due	 consideration	 must	 be	 given	 to	 sound	 software	 engineering	
principles;	however,	the	overall	objective	of	achieving	understandability	must	be	achieved.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 165	
	

	

A.3.1.1 Cohesion	

Cohesion	 is	 the	manner	 and	 degree	 to	which	 the	 tasks	 performed	 by	 a	 single	 software	module	 are	
related	 to	 one	 another;	 types	 of	 cohesion	 include	 coincidental,	 communicational,	 functional,	 logical,	
sequential,	 and	 temporal.	 These	 types	 of	 cohesion	 are	 characterized	 below,	 listed	 in	 the	 order	 of	
decreasing	desirability.	

a)	 functional	 cohesion	 -	 a	module	 with	 functional	 cohesion	 performs	 activities	 related	 to	 a	 single	
purpose.	 A	 functionally	 cohesive	module	 transforms	 a	 single	 type	 of	 input	 into	 a	 single	 type	 of	
output,	such	as	a	stack	manager	or	a	queue	manager.	

b)	 sequential	cohesion	-	a	module	with	sequential	cohesion	contains	functions	each	of	whose	output	
is	input	for	the	following	function	in	the	module.	An	example	of	a	sequentially	cohesive	module	is	
one	 that	 contains	 the	 functions	 to	 write	 audit	 records	 and	 to	maintain	 a	 running	 count	 of	 the	
accumulated	number	of	audit	violations	of	a	specified	type.	

c)	 communicational	 cohesion	 -	 a	 module	 with	 communicational	 cohesion	 contains	 functions	 that	
produce	 output	 for,	 or	 use	 output	 from,	 other	 functions	 within	 the	 module.	 An	 example	 of	 a	
communicationally	 cohesive	 module	 is	 an	 access	 check	 module	 that	 includes	 mandatory,	
discretionary,	and	capability	checks.	

d)	 temporal	cohesion	-	a	module	with	temporal	cohesion	contains	functions	that	need	to	be	executed	
at	about	the	same	time.	Examples	of	temporally	cohesive	modules	include	initialisation,	recovery,	
and	shutdown	modules.	

e)	 logical	 (or	procedural)	 cohesion	 -	 a	module	with	 logical	 cohesion	performs	 similar	 activities	 on	
different	data	structures.	A	module	exhibits	 logical	cohesion	if	 its	 functions	perform	related,	but	
different,	operations	on	different	inputs.	

f)	 coincidental	 cohesion	 -	 a	 module	 with	 coincidental	 cohesion	 performs	 unrelated,	 or	 loosely	
related,	activities.	

A.3.1.2 Coupling	

Coupling	is	the	manner	and	degree	of	interdependence	between	software	modules;	types	of	coupling	
include	call,	common	and	content	coupling.	These	types	of	coupling	are	characterized	below,	listed	in	
the	order	of	decreasing	desirability:	

a)	 call:	 two	 modules	 are	 call	 coupled	 if	 they	 communicate	 strictly	 through	 the	 use	 of	 their	
documented	 function	 calls;	 examples	 of	 call	 coupling	 are	 data,	 stamp,	 and	 control,	 which	 are	
defined	below.	

1)	 data:	 two	 modules	 are	 data	 coupled	 if	 they	 communicate	 strictly	 through	 the	 use	 of	 call	
parameters	that	represent	single	data	items.	

2)	 stamp:	 two	 modules	 are	 stamp	 coupled	 if	 they	 communicate	 through	 the	 use	 of	 call	
parameters	that	comprise	multiple	fields	or	that	have	meaningful	internal	structures.	

3)	 control:	 two	 modules	 are	 control	 coupled	 if	 one	 passes	 information	 that	 is	 intended	 to	
influence	the	internal	logic	of	the	other.	

b)	 common:	 two	 modules	 are	 common	 coupled	 if	 they	 share	 a	 common	 data	 area	 or	 a	 common	
system	resource.	Global	variables	indicate	that	modules	using	those	global	variables	are	common	
coupled.	 Common	 coupling	 through	 global	 variables	 is	 generally	 allowed,	 but	 only	 to	 a	 limited	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 166	
	

	

degree.	 For	 example,	 variables	 that	 are	 placed	 into	 a	 global	 area,	 but	 are	 used	by	 only	 a	 single	
module,	 are	 inappropriately	 placed,	 and	 should	 be	 removed.	 Other	 factors	 that	 need	 to	 be	
considered	in	assessing	the	suitability	of	global	variables	are:	

1)	 The	number	of	modules	that	modify	a	global	variable:	In	general,	only	a	single	module	should	
be	allocated	the	responsibility	for	controlling	the	contents	of	a	global	variable,	but	there	may	
be	situations	in	which	a	second	module	may	share	that	responsibility;	in	such	a	case,	sufficient	
justification	must	be	provided.	It	is	unacceptable	for	this	responsibility	to	be	shared	by	more	
than	 two	 modules.	 (In	 making	 this	 assessment,	 care	 should	 be	 given	 to	 determining	 the	
module	actually	responsible	for	the	contents	of	the	variable;	for	example,	if	a	single	routine	is	
used	to	modify	the	variable,	but	that	routine	simply	performs	the	modification	requested	by	
its	 caller,	 it	 is	 the	calling	module	 that	 is	 responsible,	and	 there	may	be	more	 than	one	such	
module).	Further,	as	part	of	the	complexity	determination,	if	two	modules	are	responsible	for	
the	contents	of	a	global	variable,	 there	should	be	clear	 indications	of	how	the	modifications	
are	coordinated	between	them.	

2)	 The	number	of	modules	that	reference	a	global	variable:	Although	there	is	generally	no	limit	
on	 the	 number	 of	modules	 that	 reference	 a	 global	 variable,	 cases	 in	 which	many	modules	
make	such	a	reference	should	be	examined	for	validity	and	necessity.	

c)	 content:	two	modules	are	content	coupled	if	one	can	make	direct	reference	to	the	internals	of	the	
other	(e.g.	modifying	code	of,	or	referencing	labels	internal	to,	the	other	module).	The	result	is	that	
some	or	all	of	the	content	of	one	module	are	effectively	included	in	the	other.	Content	coupling	can	
be	thought	of	as	using	unadvertised	module	interfaces;	this	 is	 in	contrast	to	call	coupling,	which	
uses	only	advertised	module	interfaces.	

A.3.2 Complexity	of	procedural	software	

Complexity	 is	 the	 measure	 of	 the	 decision	 points	 and	 logical	 paths	 of	 execution	 that	 code	 takes.	
Software	 engineering	 literature	 cites	 complexity	 as	 a	 negative	 characteristic	 of	 software	 because	 it	
impedes	understanding	of	the	logic	and	flow	of	the	code.	Another	impediment	to	the	understanding	of	
code	is	the	presence	of	code	that	is	unnecessary,	in	that	it	is	unused	or	redundant.	

The	 use	 of	 layering	 to	 separate	 levels	 of	 abstraction	 and	 minimize	 circular	 dependencies	 further	
enables	a	better	understanding	of	the	TSF,	providing	more	assurance	that	the	TOE	security	functional	
requirements	are	accurately	and	completely	instantiated	in	the	implementation.	

Reducing	complexity	also	includes	reducing	or	eliminating	mutual	dependencies,	which	pertains	both	
to	modules	in	a	single	layer	and	to	those	in	separate	layers.	Modules	that	are	mutually	dependent	may	
rely	on	one	another	to	formulate	a	single	result,	which	could	result	in	a	deadlock	condition,	or	worse	
yet,	a	race	condition	(e.g.	time	of	check	vs.	time	of	use	concern),	where	the	ultimate	conclusion	could	
be	indeterminate	and	subject	to	the	computing	environment	at	the	given	instant	in	time.	

Design	 complexity	 minimization	 is	 a	 key	 characteristic	 of	 a	 reference	 validation	 mechanism,	 the	
purpose	of	which	is	to	arrive	at	a	TSF	that	is	easily	understood	so	that	it	can	be	completely	analysed.	
(There	 are	 other	 important	 characteristics	 of	 a	 reference	 validation	 mechanism,	 such	 as	 TSF	 self-
protection	 and	 non-bypassability;	 these	 other	 characteristics	 are	 covered	 by	 requirements	 in	 the	
ADV_ARC	family.)	

A.4 ADV_TDS:	Subsystems	and	Modules	

This	clause	provides	additional	guidance	on	the	TDS	family,	and	its	use	of	the	terms	“subsystem”	and	
“module”.	 This	 is	 followed	 by	 a	 discussion	 of	 how,	 as	 more-detailed	 becomes	 available,	 the	
requirement	for	the	less-detailed	is	reduced.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 167	
	

	

A.4.1 Subsystems	

Figure	A.3	shows	that,	depending	on	the	complexity	of	the	TSF,	the	design	may	be	described	in	terms	
of	subsystems	and	modules	(where	subsystems	are	at	a	higher	level	of	abstraction	than	modules);	or	it	
may	just	be	described	in	terms	of	one	 level	of	abstraction	(e.g.	subsystems	at	 lower	assurance	 levels,	
modules	 at	 higher	 levels).	 In	 cases	 where	 a	 lower	 level	 of	 abstraction	 (modules)	 is	 presented,	
requirements	 levied	 on	 higher-level	 abstractions	 (subsystems)	 are	 essentially	 met	 by	 default.	 This	
concept	is	further	elaborated	in	the	discussion	on	subsystems	and	modules	below.	

	

Figure	A.3	—	Subsystems	and	Modules	

The	 developer	 is	 expected	 to	 describe	 the	 design	 of	 the	 TOE	 in	 terms	 of	 subsystems.	 The	 term	
“subsystem”	was	chosen	to	be	specifically	vague	so	that	it	could	refer	to	units	appropriate	to	the	TOE	
(e.g.	subsystems,	modules).	subsystems	can	even	be	uneven	in	scope,	as	long	as	the	requirements	for	
description	of	subsystems	are	met.	

The	 first	use	of	 subsystems	 is	 to	distinguish	 the	TSF	boundary;	 that	 is,	 the	portions	of	 the	TOE	 that	
comprise	the	TSF.	In	general,	a	subsystem	is	part	of	the	TSF	if	it	has	the	capability	(whether	by	design	
or	implementation)	to	affect	the	correct	operation	of	any	of	the	SFRs.	For	example,	for	software	that	
depends	on	different	hardware	execution	modes	to	provide	domain	separation	(see	A.1)	where	SFR-
enforcing	code	is	executed	in	one	domain,	then	all	subsystems	that	execute	in	that	domain	would	be	
considered	 part	 of	 the	 TSF.	 Likewise,	 if	 a	 server	 outside	 that	 domain	 implemented	 an	 SFR	 (e.g.	
enforced	an	access	control	policy	over	objects	it	managed),	then	it	too	would	be	considered	part	of	the	
TSF.	

The	second	use	of	subsystems	is	to	provide	a	structure	for	describing	the	TSF	at	a	level	of	description	
that,	 while	 describing	 how	 the	 TSF	 works,	 does	 not	 necessarily	 contain	 low-level	 implementation	
detail	found	in	module	descriptions	(discussed	later).	subsystems	are	described	at	either	a	high	level	
(lacking	an	abundance	of	 implementation	detail)	or	a	detailed	 level	(providing	more	 insight	 into	the	
implementation).	 The	 level	 of	 description	provided	 for	 a	 subsystem	 is	 determined	by	 the	degree	 to	
which	that	subsystem	is	responsible	for	implementing	an	SFR.	

An	SFR-enforcing	subsystem	is	a	subsystem	that	provides	mechanisms	for	enforcing	an	element	of	any	
SFR,	or	directly	supports	a	subsystem	that	is	responsible	for	enforcing	an	SFR.	If	a	subsystem	provides	
(implements)	an	SFR-enforcing	TSFI,	then	the	subsystem	is	SFR-enforcing.	

Subsystems	 can	 also	 be	 identified	 as	 SFR-supporting	 and	 SFR-non-interfering.	 An	 SFR-supporting	
subsystem	is	one	that	is	depended	on	by	an	SFR-enforcing	subsystem	in	order	to	implement	an	SFR,	
but	does	not	play	as	direct	a	role	as	an	SFR-enforcing	subsystem.	An	SFR-non-interfering	subsystem	is	
one	that	is	not	depended	upon,	in	either	a	supporting	or	enforcing	role,	to	implement	an	SFR.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 168	
	

	

A.4.2 Modules	

A	module	 is	 generally	 a	 relatively	 small	 architectural	 unit	 that	 can	be	 characterized	 in	 terms	of	 the	
properties	 discussed	 in	 TSF	 internals	 (ADV_INT).	When	 both	 ADV_TDS.3	 Basic	 modular	 design	 (or	
above)	requirements	and	TSF	internals	(ADV_INT)	requirements	are	present	in	a	PP	or	ST,	a	“module”	
in	 terms	of	 the	TOE	design	(ADV_TDS)	requirements	refers	 to	 the	same	entity	as	a	“module”	 for	 the	
TSF	internals	(ADV_INT)	requirements.	Unlike	subsystems,	modules	describe	the	implementation	in	a	
level	of	detail	that	can	serve	as	a	guide	to	reviewing	the	implementation	representation.	

It	 is	 important	 to	note	 that,	depending	on	 the	TOE,	modules	and	subsystems	may	refer	 to	 the	same	
abstraction.	For	ADV_TDS.1	Basic	design	and	ADV_TDS.2	Architectural	design	(which	do	not	require	
description	at	the	module	 level)	the	subsystem	description	provides	the	 lowest	 level	detail	available	
about	 the	 TSF.	 For	 ADV_TDS.3	 Basic	 modular	 design	 (which	 require	 module	 descriptions)	 these	
descriptions	 provide	 the	 lowest	 level	 of	 detail,	 while	 the	 subsystem	 descriptions	 (if	 they	 exist	 as	
separate	entities)	merely	serve	to	put	to	the	module	descriptions	in	context.	That	is,	it	is	not	necessary	
to	provide	detailed	subsystem	descriptions	if	module	descriptions	exist.	In	TOEs	that	are	sufficiently	
simple,	 a	 separate	 “subsystem	 description”	 is	 not	 necessary;	 the	 requirements	 can	 be	met	 through	
documentation	 provided	 by	modules.	 For	 complex	 TOEs,	 the	 purpose	 of	 the	 subsystem	 description	
(with	 respect	 to	 the	 TSF)	 is	 to	 provide	 the	 reader	 context	 so	 they	 can	 focus	 their	 analysis	
appropriately.	This	difference	is	illustrated	in	Figure	A.3.	

An	 SFR-enforcing	module	 is	 a	module	 that	 completely	 or	 partially	 implements	 a	 security	 functional	
requirement	 (SFR)	 in	 the	 ST.	 Such	 modules	 may	 implement	 an	 SFR-enforcing	 TSFI,	 but	 some	
functionality	 expressed	 in	 an	 SFR	 (for	 example,	 audit	 and	 object	 re-use	 functionality)	 may	 not	 be	
directly	 tied	 to	 a	 single	 TSFI.	 As	was	 the	 case	with	 subsystems,	 SFR-supporting	modules	 are	 those	
modules	 that	 are	 depended	 upon	 by	 an	 SFR-enforcing	module,	 but	 are	 not	 responsible	 for	 directly	
implementing	 an	 SFR.	 SFR-non-interfering	modules	 are	 those	modules	 that	 do	 not	 deal,	 directly	 or	
indirectly,	with	the	enforcement	of	SFRs.	

It	 is	 important	 to	 note	 that	 the	 determination	 of	 what	 “directly	 implements”	 means	 is	 somewhat	
subjective.	In	the	narrowest	sense	of	the	term,	it	could	be	interpreted	to	mean	the	one	or	two	lines	of	
code	 that	 actually	 perform	 a	 comparison,	 zeroing	 operation,	 etc.	 that	 implements	 a	 requirement.	 A	
broader	 interpretation	might	 be	 that	 it	 includes	 the	module	 that	 is	 invoked	 in	 response	 to	 a	 SFR-
enforcing	 TSFI,	 and	 all	 modules	 that	 may	 be	 invoked	 in	 turn	 by	 that	 module	 (and	 so	 on	 until	 the	
completion	of	the	call).	Neither	of	these	interpretations	is	particularly	satisfying,	since	the	narrowness	
of	 the	 first	 interpretation	 may	 lead	 to	 important	 modules	 being	 incorrectly	 categorised	 as	 SFR	
supporting,	while	the	second	leads	to	modules	that	are	actually	not	SFR-enforcing	being	classified	as	
such.	

A	description	of	a	module	should	be	such	that	one	could	create	an	implementation	of	the	module	from	
the	 description,	 and	 the	 resulting	 implementation	 would	 be	 1)	 identical	 to	 the	 actual	 TSF	
implementation	 in	 terms	 of	 the	 interfaces	 presented,	 2)	 identical	 in	 the	 use	 of	 interfaces	 that	 are	
mentioned	 in	the	design,	and	3)	 functionally	equivalent	 to	the	description	of	 the	purpose	of	 the	TSF	
module.	For	instance,	RFC	793	provides	a	high-level	description	of	the	TCP	protocol.	It	is	necessarily	
implementation	 independent.	 While	 it	 provides	 a	 wealth	 of	 detail,	 it	 is	 not	 a	 suitable	 design	
description	because	it	 is	not	specific	to	an	implementation.	An	actual	 implementation	can	add	to	the	
protocol	specified	in	the	RFC,	and	implementation	choices	(for	example,	the	use	of	global	data	vs.	local	
data	 in	various	parts	of	 the	 implementation)	may	have	an	 impact	on	 the	analysis	 that	 is	performed.	
The	design	description	of	the	TCP	module	would	list	the	interfaces	presented	by	the	implementation	
(rather	 than	 just	 those	 defined	 in	 RFC	 793),	 as	 well	 as	 an	 algorithm	 description	 of	 the	 processing	
associated	with	the	modules	implementing	TCP	(assuming	they	were	part	of	the	TSF).	

In	the	design,	modules	are	described	in	detail	in	terms	of	the	function	they	provide	(the	purpose);	the	
interfaces	 they	present	 (when	 required	by	 the	 criteria);	 the	 return	 values	 from	 such	 interfaces;	 the	
interfaces	(presented	by	other	modules)	 they	use	(provided	those	 interfaces	are	required	to	be	also	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 169	
	

	

described);	and	a	description	of	how	they	provide	their	functionality	using	a	technique	appropriate	to	
the	method	used	to	implement	the	module.	

The	 purpose	 of	 a	module	 should	 be	 described	 indicating	what	 function	 the	module	 is	 providing.	 It	
should	be	sufficient	so	that	the	reader	could	get	a	general	idea	of	what	the	module's	function	is	in	the	
architecture.	

The	 interfaces	 presented	 by	 a	 module	 are	 those	 interfaces	 used	 by	 other	 modules	 to	 invoke	 the	
functionality	provided.	 Interfaces	 include	both	explicit	 interfaces	 (e.g.	 a	 calling	 sequence	 invoked	by	
other	modules)	as	well	as	implicit	 interfaces	(e.g.	global	data	manipulated	by	the	module).	Interfaces	
are	described	 in	 terms	of	how	 they	 are	 invoked,	 and	any	values	 that	 are	 returned.	This	description	
would	include	a	list	of	parameters,	and	descriptions	of	these	parameters.	If	a	parameter	were	expected	
to	take	on	a	set	of	values	(e.g.	a	“flag”	parameter),	the	complete	set	of	values	the	parameter	could	take	
on	 that	 would	 have	 an	 effect	 on	 module	 processing	 would	 be	 specified.	 Likewise,	 parameters	
representing	data	structures	are	described	such	that	each	field	of	the	data	structure	is	identified	and	
described.	Global	data	 should	be	described	 to	 the	extent	 required	 to	understand	 their	purpose.	The	
level	of	description	 required	 for	a	global	data	 structure	needs	 to	be	 identical	 to	 the	one	 for	module	
interfaces,	where	the	input	parameter	and	return	values	correspond	to	the	individual	fields	and	their	
possible	 values	 in	 the	 data	 structure.	 Global	 data	 structures	 may	 be	 described	 separate	 from	 the	
modules	 that	 manipulate	 or	 read	 them	 as	 long	 as	 the	 design	 of	 the	 modules	 contain	 sufficient	
information	about	 the	global	data	 structures	updated	or	 the	 information	extracted	 from	global	data	
structures.	

Note	 that	 different	 programming	 languages	 may	 have	 additional	 “interfaces”	 that	 would	 be	 non-
obvious;	an	example	would	be	operator/function	overloading	 in	C++.	This	 “implicit	 interface”	 in	 the	
class	description	would	also	be	described	as	part	of	the	module	design.	Note	that	although	a	module	
could	 present	 only	 one	 interface,	 it	 is	more	 common	 that	 a	module	 presents	 a	 small	 set	 of	 related	
interfaces.	

When	it	is	required	to	describe	the	interfaces	used	by	a	module,	it	must	be	clear	from	either	the	design	
description	 of	 the	module	 or	 the	 purpose	 of	 the	module	 called,	 what	 service	 is	 expected	 from	 the	
module	called.	For	example	if	Module	A	is	being	described,	and	it	uses	Module	B's	bubble	sort	routine,	
the	description	of	the	interaction	between	modules	must	allow	to	identify	why	Module	B's	bubble	sort	
routine	 is	called	and	what	this	call	contributes	to	the	 implementation	of	 the	SFRs.	The	 interface	and	
purpose	of	Module	B's	 bubble	 sort	 routine	must	be	described	as	part	 of	 the	 interfaces	of	Module	B	
(provided	the	level	of	ADV_TDS	and	the	classification	of	Module	B	require	a	description	its	interfaces)	
and	 so	 Module	 A	 just	 needs	 to	 identify	 what	 data	 it	 needs	 to	 have	 sorted	 using	 this	 routine.	 An	
adequate	description	would	be:	 “Module	A	 invokes	Module	B's	 interface	double_bubble()	 to	 sort	 the	
usernames	in	alphabetical	order”.	

Note	that	if	this	sorting	of	the	user	names	is	not	important	for	the	enforcement	of	any	SFR	(e.g.	it	is	just	
done	to	speed	up	things	and	an	algorithmically	identical	implementation	of	Module	A	could	also	avoid	
to	have	the	usernames	sorted),	the	use	of	Module	B's	bubble	sort	routine	is	not	SFR-enforcing	and	it	is	
sufficient	to	explain	in	the	description	of	Module	A	that	the	usernames	are	sorted	in	alphabetical	order	
to	 enhance	 performance.	 Module	 B	 may	 be	 classified	 as	 “SFR-supporting”	 only	 and	 the	 level	 of	
ADV_TDS	chosen	indicates	if	the	interfaces	of	SFR-supporting	modules	need	to	be	described	or	if	it	is	
sufficient	to	just	describe	the	purpose	of	Module	B.	

As	discussed	previously,	the	algorithmic	description	of	the	module	should	describe	in	an	algorithmic	
fashion	the	implementation	of	the	module.	This	can	be	done	in	pseudo-code,	through	flow	charts,	or	
(at	 ADV_TDS.3	 Basic	modular	 design)	 informal	 text.	 It	 discusses	 how	 the	module	 inputs	 and	 called	
functions	are	used	to	accomplish	the	module's	function.	It	notes	changes	to	global	data,	system	state,	
and	return	values	produced	by	the	module.	It	is	at	the	level	of	detail	that	an	implementation	could	be	
derived	that	would	be	very	similar	to	the	actual	implementation	of	the	TOE.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 170	
	

	

It	should	be	noted	that	source	code	does	not	meet	the	module	documentation	requirements.	Although	
the	 module	 design	 describes	 the	 implementation,	 it	 is	 not	 the	 implementation.	 The	 comments	
surrounding	the	source	code	might	be	sufficient	documentation	if	they	provide	an	explanation	of	the	
intent	 of	 the	 source	 code.	 In-line	 comments	 that	 merely	 state	 what	 each	 line	 of	 code	 is	 doing	 are	
useless	because	they	provide	no	explanation	of	what	the	module	is	meant	to	accomplish.	

In	the	elements	below,	the	labels	(SFR-enforcing,	SFR-supporting,	and	SFR-non-interfering)	discussed	
for	subsystems	and	modules	are	used	to	describe	the	amount	and	type	of	information	that	needs	to	be	
made	available	by	the	developer.	The	elements	have	been	structured	so	that	 there	 is	no	expectation	
that	the	developer	provide	only	the	information	specified.	That	is,	if	the	developer's	documentation	of	
the	 TSF	 provides	 the	 information	 in	 the	 requirements	 below,	 there	 is	 no	 expectation	 that	 the	
developer	 update	 their	 documentation	 and	 label	 subsystems	 and	 modules	 as	 SFR-enforcing,	 SFR-
supporting	or	SFR-non-interfering.	The	primary	purpose	of	this	 labelling	is	to	allow	developers	with	
less	 mature	 development	 methodologies	 (and	 associated	 artefacts,	 such	 as	 detailed	 interface	 and	
design	documentation)	to	provide	the	necessary	evidence	without	undue	cost.	

A.4.3 Levelling	Approach	

Because	 there	 is	 subjectivity	 in	determining	what	 is	SFR-enforcing	vs.	 SFR-supporting	 (and	 in	 some	
cases,	even	determining	what	is	SFR-non-interfering	the	following	paradigm	has	been	adopted	in	this	
family.	 In	 early	 components	 of	 the	 family,	 the	 developer	 makes	 a	 determination	 about	 the	
classification	of	 the	 subsystems	 into	 SFR-enforcing,	 etc.,	 supplying	 the	 appropriate	 information,	 and	
there	 is	 little	 additional	 evidence	 for	 the	evaluator	 to	 examine	 to	 support	 this	 claim.	As	 the	 level	of	
desired	 assurance	 increases,	 while	 the	 developer	 still	 makes	 a	 classification	 determination,	 the	
evaluator	obtains	more	and	more	evidence	that	is	used	to	confirm	the	developer's	classification.	

In	order	to	focus	the	evaluator's	analysis	on	the	SFR-related	portions	of	the	TOE,	especially	at	 lower	
levels	of	assurance,	the	components	of	the	family	are	levelled	such	that	initially	detailed	information	is	
required	 only	 for	 SFR-enforcing	 architectural	 entities.	 As	 the	 level	 of	 assurance	 increases,	 more	
information	is	required	for	SFR-supporting	and	(eventually)	SFR-non-interfering	entities.	It	should	be	
noted	that	even	when	complete	information	is	required,	it	is	not	required	that	all	of	this	information	
be	 analysed	 in	 the	 same	 level	 of	 detail.	 The	 focus	 should	 be	 in	 all	 cases	 on	whether	 the	 necessary	
information	has	been	provided	and	analysed.	

Table	A.1	summarizes	the	information	required	at	each	of	the	family	components	for	the	architectural	
entities	to	be	described.	

Table	A.1	—	Description	Detail	Levelling	

		
TSF	subsystem	 TSF	Module	

SFR	Enforce	 SFR	Support	 SFR	NI	 SFR	Enforce	 SFR	
Support	 SFR	NI	

ADV_TDS.1	Basic	
design	(informal	
presentation)	

structure,	
summary	of	
SFR-Enf.	
behaviour,	
interactions	

designation	
supporta	

designation	
support	 		 		 		

ADV_TDS.2	
Architectural	
design	(informal	
presentation)	

structure,	
detailed	
description	of	
SFR-Enf.	
behaviour,	
summary	of	
other	
behaviour,	

structure,	
summary	of	
other	
behaviour,	
interactions	

designation	
support,	
interactions	

		 		 		



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 171	
	

	

interactions	

ADV_TDS.3	Basic	
modular	design	
(informal	
presentation)	

description,	
interactions	

description,	
interactions	

description,	
interactions	

purpose,	SFR	
interfacesb	

interaction,	
purpose	

interaction,	
purpose	

ADV_TDS.4	
Semiformal	
modular	design	
(semiformal	
presentation)	

description,	
interactions	

description,	
interactions	

description,	
interactions	

purpose,	SFR	
interfaces	

purpose,	
SFR	
interfaces	

interaction,	
purpose	

ADV_TDS.5	
Complete	
semiformal	
modular	design	
(semiformal	
presentation)	

description,	
interactions	

description,	
interactions	

description,	
interactions	

purpose,	all	
interfacesc	

purpose,	all	
interfaces	

purpose,	all	
interfaces	

ADV_TDS.6	
Complete	
semiformal	
modular	design	
with	formal	high-
level	design	
presentation	
(semiformal	
presentation;	
additional	formal	
presentation)	

description,	
interactions	

description,	
interactions	

description,	
interactions	

purpose,	all	
interfaces	

purpose,	all	
interfaces	

purpose,	all	
interfaces	

a			designation	support	means	 that	only	documentation	sufficient	 to	support	 the	classification	of	 the	subsystem	/	module	 is	
needed.	
b			SFR	 interfaces	means	 that	 the	module	 description	 contains,	 for	 each	 SFR-related	 interface,	 the	 returned	 values	 and	 the	
called	interfaces	to	other	modules.	
c			All	interfaces	means	that	the	module	description	contains,	for	each	interface,	the	returned	values	and	the	called	interfaces	to	
other	modules.	

A.4.4 Security	relevance	

The	comments	to	WD2	regarding	this	chapter	are	pending	as	the	contributor	was	not	able	to	answer	
the	comments	until	the	deadline.	

The	ISO/IEC	15408	series	concentrates	the	description,	the	evidence	and	the	analysis	on	the	security	
functionality	of	the	TOE.	This	requires	characterization	of	security	relevance	of	functional	and	physical	
parts	 of	 the	 TOE.	 Interfaces,	 subsystems	 and	 modules	 may	 be	 categorised	 (either	 implicitly	 or	
explicitly)	as	“SFR-enforcing”,	“SFR-supporting”,	or	“SFR-noninterfering”.	

The	developer	evidence	and	 the	evaluation	analysis	relates	 to	 the	TOE	and	 focus	on	 the	TSF	and	 its	
SFR-enforcing	 and	 SFR-supporting	 implementation.	 The	 security	 architecture	 description	 shall	
demonstrate	that	the	identified	non-TSF	subsystems	of	the	TOE	are	not	bypassing	the	TSF	and	the	TSF	
protects	themselves	against	corruption	by	non-TSF	code	or	entities.	The	developer	shall	describe	the	
SFR-noninterfering	interfaces,	subsystems	and	modules	in	the	TOE	design	and	demonstrate	that	they	
do	not	interfere	with	the	TSF	because	of	their	purposes,	interactions	or	separation	of	resources.	

An	interface,	subsystem	or	module	is	

—	 SFR-enforcing,	if	it	directly	implements	an	SFR.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 172	
	

	

—	 SFR-supporting	if	it	has	to	operate	functionally	correctly	in	order	to	support	the	proper	function	of	
the	SFRs.	

—	 SFR-non-interfering	if	it	is	not	related	to	the	implementation	of	the	SFRs.	

The	 focus	 on	 security	 enforcing	 and	 security	 supporting	 functionality	 requires	 evidence	 of	 non-
interference	 of	 the	 other	 functionality.	 Even	 correct	 implemented	 security	 enforcing	 functions	 and	
security	 mechanisms	 may	 be	 bypassed,	 circumvented,	 deactivated,	 corrupted,	 or	 directly	
attacked.	Non-interference	 implies	 that	 the	TSF	 cannot	be	misused	and	unauthorized	 access	 to	 the	
resources	of	the	TSF	implementation	is	prevented	or	impossible.	Therefore	the	security	architecture	
aspects	 of	 non-bypassability	 and	 self-protection	 are	 critical	 if	 security	 relevance	 of	 interfaces,	
subsystems	and	modules	is	categorized	and	this	categorization	is	used	in	the	vulnerability	analysis.	

TSF	self-protection	is	the	security	architecture	property	whereby	the	TSF	cannot	be	corrupted	by	non-
TSF	code	or	entities.	This	includes	non-TSF	subsystems	of	TOE	and	non-TOE	parts	of	the	IT	product.	It	
is	similar	to	the	evidence	for	SFR-non-interfering	subsystems/modules.	

The	security	domains	are	environments	provided	by	the	TSF	for	the	use	by	untrusted	entities	in	such	a	
way	that	these	environments	are	isolated	and	protected	from	each	other.	

Therefore	 the	 analysis	 of	 non-interference	 during	 evaluation	 requires	 examination	 of	 the	 security	
architecture	of	the	TOE	(ADV_ARC)	and	may	need	more	information	on	non-TSF	subsystems	than	only	
the	TOE	structure	in	terms	of	subsystems	as	provided	for	ADV_TDS.x.1.	The	developers	shall	provide	a	
rationale	that	TSF	is	correctly	defined	and	the	analysis	of	SFR-non-interfering	module	in	terms	of	its	
purpose	and	interaction	with	other	modules	

—	 purpose:	how	a	module	provides	their	functionality,	no	further	design	decisions	are	needed.	

—	 interaction:	reason	that	subsystems	or	modules	communicate,	and	characterizes	the	information	
that	is	passed	(less	details	than	for	interfaces).	

During	 evaluation	 non-interference	 shall	 be	 analysed	 as	 part	 of	 the	 examination	 of	 functional	
specification	 and	 TOE	 design,	 and	 the	 vulnerability	 analysis.	 The	 categorization	 of	 interfaces,	
subsystems	 and	modules	 as	 SFR-enforcing,	 SFR-supporting	 and	 SFR-noninterfering	 implies	 specific	
examination	 of	 the	 functional	 specification,	 design	 and	 testing.	 An	 interpretation	 of	 TSFI	 as	 all	
accessible	 external	 interfaces	 of	 the	 TSF	 would	 help	 this	 analysis.	 The	 functional	 tests	 of	 all	 TSF	
subsystems	(beginning	with	ATE_DPT.1)	and	all	TSF	modules	(ATE_DPT.3	and	higher)	should	provide	
evidence	for	the	correctness	of	their	security	categorization.	

A.5 ADV_SPM:	Supplementary	material	on	formal	methodsRelationship	
with	the	security	target	and	the	functional	specification	

Formal	methods	provide	a	mathematical	representation	of	the	TSF	and	its	behaviour	and	are	required	
by	 the	 ADV_SPM.1	 (Formal	 TSF	 model)	 and	 also	 ADV_FSP.6	 (Complete	 semiformal	 functional	
specification	 with	 additional	 formal	 specification),	 and	 ADV_TDS.6	 (Complete	 semiformal	 modular	
design	 with	 formal	 high-level	 design	 presentation)	 components.	 In	 ISO/IEC	 18045:20XX,	 Annex	 C	
Formal	style,	supplementary	material	on	formal	methods	is	provided.		
	

Figure	 3-1	 illustrates	 the	 relationships	 between	 the	 SPM	 as	 specified	 in	 ADV_SPM.1	 and	 the	
representations	of	the	TSF	provided	by	the	security	target	and	the	functional	specification.			

	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 173	
	

	

	

	

Figure	15-1	Relationship	of	ADV_SPM	to	other	families	and	constructs		

	

Class	ASE	defines	the	requirements	for	the	correspondence	between	SFRs	and	the	security	objectives	
for	 the	TOE,	as	well	as	 the	requirements	 for	 the	correspondence	between	the	SPD	elements	and	the	
security	objectives	for	the	TOE	and	those	for	the	operational	environment,	respectively.	

	

{SFRs} {S. OBJECTIVES for the TOE}

Formal TSF Model Formal TOE Properties

SPD

TSF Functional Specification

TOE Design

TSF Implementation Representation

ADV_SPM.1.3C

ADV_SPM.1.3D
ADV_SPM.1.5C

ADV_SPM.1.4C

ADV_SPM.1.4D
ADV_SPM.1.5D
ADV_SPM.1.6D

ADV_SPM.1.6C
ADV_SPM.1.7C
ADV_SPM.1.8C

ASE ASE

preservation of properties

formal proof

{S. OBJECTIVES for the TOE env}

ASE

ADV_TDS

ADV_IMP

ADV_TDS

ADV_IMP

relation of correspondance

Security Target

ADV_FSP

ADV_SPM.1

ADV_SPM.1.1D ADV_SPM.1.2D

On tools and explanatory text
ADV_SPM.1.7D
ADV_SPM.1.1C
ADV_SPM.1.2C
ADV_SPM.1.9C

{SFRs} {S. OBJECTIVES for the TOE}

Formal TSF Model Formal TOE Properties

SPD

TSF Functional Specification

TOE Design

TSF Implementation Representation

ADV_SPM.1.3C

ADV_SPM.1.3D
ADV_SPM.1.5C

ADV_SPM.1.4C

ADV_SPM.1.4D
ADV_SPM.1.5D
ADV_SPM.1.6D

ADV_SPM.1.6C
ADV_SPM.1.7C
ADV_SPM.1.8C

ASE ASE

preservation of properties

formal proof

{S. OBJECTIVES for the TOE env}

ASE

ADV_TDS

ADV_IMP

ADV_TDS

ADV_IMP

relation of correspondance

Security Target

ADV_FSP

ADV_SPM.1

ADV_SPM.1.1D ADV_SPM.1.2D

On tools and explanatory text
ADV_SPM.1.7D
ADV_SPM.1.1C
ADV_SPM.1.2C
ADV_SPM.1.9C



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 174	
	

	

Each	 assurance	 family	 specific	 to	 a	TSF	 representation,	 i.e.	 Functional	 specification	 (ADV_FSP),	 TOE	
design	 (ADV_TDS),	 and	 TSF	 Implementation	 representation	 (ADV_IMP)	 defines	 both	 requirements	
pertaining	to	developer	actions	for	the	correspondence	of	that	specific	TSF	representation	and	the	one	
directly	 above	 it	 and	 requirements	 for	 the	 evaluation	 of	 the	 correspondence	 of	 that	 specific	 TSF	
representation	to	the	set	of	SFRs.		

The	 ADV_SPM	 family	 focuses	 on	 a	 formal	 security	 model	 which	 is	 a	 formal	 representation	 of	 the	
essential	 aspects	 of	 security	 (i.e.	 the	 TSF)	 and	 their	 relationship	 to	 the	 behaviour	 of	 the	 TOE.	
Specifically,	the	formal	TSF	model	is	a	formal	description	of	the	system	being	evaluated	as	defined	by	
the	entire	 set	of	 SFRs	described	 in	 the	ST.	The	 set	of	 formal	TOE	properties	defined	 for	 this	 formal	
model	covers	all	the	security	objectives	for	the	TOE.	To	this	end,	the	ADV_SPM	family	defines:		

• requirements	pertaining	to	developer	actions	for	formally	modelling	the	TSF	(ADV_SPM.1.1D)	
and	the	set	of	formal	TOE	properties	(ADV_SPM.1.2D);	

• requirements	regarding	the	content	and	presentation	of	the	correspondence	between:		

o the	formal	TSF	model	and	the	complete	set	of	SFRs	(ADV_SPM.1.3C);		

o the	formal	TOE	properties	and	the	security	objectives	for	the	TOE	(ADV_SPM.1.4C).	

Assurance	 is	 provided	 by	 formally	 proving	 that	 the	 formal	 TSF	 model	 satisfies	 the	 formal	 TOE	
properties.	 To	 this	 end,	 the	 ADV_SPM	 family	 defines	 requirements	 for	 this	 formal	 proof	
(ADV_SPM.1.3D	and	ADV_SPM.1.5C).	The	confidence	gained	by	formally	proving	the	properties	of	the	
formal	model	 is	accompanied	by	confidence	gained	by	defining	a	correspondence	rationale	between	
the	formal	model	and	the	TSF	functional	specification	(ADV_SPM.1.4D).	The	correspondence	rationale	
consists	 of	 a	 formal	 proof	 when	 mapping	 to	 formal	 aspects	 of	 the	 TSF	 functional	 specification	
(ADV_SPM.1.6D).	 It	 consists	 of	 a	 semiformal	 demonstration	 when	 the	 functional	 specification	 is	
described	using	semiformal	style	(ADV_SPM.1.5D).	The	ADV_SPM	family	defines	content	requirements	
for	the	correspondence	rationale	concerning	the	preservation	of	the	formal	TOE	properties	by	the	TSF	
functional	specification	(ADV_SPM.1.6C/7C/8C).			

	

The	 ADV_SPM	 family	 includes	 requirements	 concerning	 the	 underlying	 mathematical	 theory	
(ADV_SPM.1.1C),	 the	 tools	 used	 for	 the	 formal	 modelling	 and	 proof	 (ADV_SPM.1.7D	 and	
ADV_SPM.1.9C)	 as	well	 as	 requirements	 on	 the	 explanatory	 text	 supporting	 and	 documenting	 each	
element	(ADV_SPM.1.2C).		

	

ADV_FSP	 requires	 that	 the	 developer	 establishes	 the	 correspondence	 between	 the	 TSF	 functional	
specification	and	the	SFRs.	Although	this	requirement	is	independent	of	the	SPM,	when	ADV_SPM.1	is	
used	this	correspondence	is	a	by-product	of	the	correspondence	between	SFRs	and	formal	TSF	model	
on	one	hand	and	between	the	model	and	the	functional	specification	on	the	other	hand.		

	

Figure	 3-1	 shows	 the	 role	 of	 the	 formal	 TSF	 model	 in	 the	 relationship	 between	 the	 functional	
specification	 and	 the	 security	 target	 (SFRs	 and	 TOE	 properties),	 which	 is	 afterwards	 propagated	
across	the	design	and	implementation	representations	by	means	of	ADV_TDS	and	ADV_IMP	families	of	
requirements.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 175	
	

	

Formal	methods	provide	a	mathematical	representation	of	the	TSF	and	its	behaviour	and	are	required	
by	the	ADV_FSP.6	Complete	semi-formal	functional	specification	with	additional	formal	specification,	
ADV_SPM.1	Formal	TOE	security	policy	model,	and	ADV_TDS.6	Complete	semiformal	modular	design	
with	formal	high-level	design	presentation	components.	There	are	two	aspects	of	formal	methods:	the	
specification	language	that	is	used	for	formal	expression,	and	the	theorem	prover	that	mathematically	
proves	the	completeness	and	correctness	of	the	formal	specification.	

A	formal	specification	is	expressed	within	a	formal	system	based	upon	well-established	mathematical	
concepts.	These	mathematical	concepts	are	used	to	define	well-defined	semantics,	syntax	and	rules	of	
inference.	A	 formal	system	is	an	abstract	system	of	 identities	and	relations	that	can	be	described	by	
specifying	a	formal	alphabet,	a	formal	language	over	that	alphabet	which	is	based	on	a	formal	syntax,	
and	a	set	of	formal	rules	of	inference	for	constructing	derivations	of	sentences	in	the	formal	language.	

The	evaluator	should	examine	the	identified	formal	systems	to	make	sure	that:	

—	 The	 semantics,	 syntax	 and	 inference	 rules	 of	 the	 formal	 system	 are	 defined	 or	 a	 definition	 is	
referenced.	

—	 Each	formal	system	is	accompanied	by	explanatory	text	that	provides	defined	semantics	so	that:	

1)	 the	 explanatory	 text	 provides	 defined	meanings	 of	 terms,	 abbreviations	 and	 acronyms	 that	
are	used	in	a	context	other	than	that	accepted	by	normal	usage;	

2)	 the	 use	 of	 a	 formal	 system	 and	 semiformal	 notation	 use	 is	 accompanied	 by	 supporting	
explanatory	text	in	informal	style	appropriate	for	unambiguous	meaning;	

3)	 the	 formal	 system	 is	 able	 to	 express	 rules	 and	 characteristics	 of	 applicable	 SFPs,	 security	
functionality	 and	 interfaces	 (providing	details	 of	 effects,	 exceptions	 and	 error	messages)	 of	
TSF,	 their	 subsystems	 or	 modules	 to	 be	 specified	 for	 the	 assurance	 family	 for	 which	 the	
notations	are	used;	

4)	 the	notation	provides	rules	to	determine	the	meaning	of	syntactical	valid	constructs.	

—	 Each	 formal	 system	 uses	 a	 formal	 syntax	 that	 provides	 rules	 to	 unambiguously	 recognize	
constructs.	

—	 Each	formal	system	provides	proof	rules	which	

5)	 support	logical	reasoning	of	well-established	mathematical	concepts,	

6)	 help	to	prevent	derivation	of	contradictions.	

If	 the	 developer	 uses	 a	 formal	 system	 which	 is	 already	 accepted	 by	 the	 evaluation	 authority	 the	
evaluator	can	rely	on	the	level	of	formality	and	strength	of	the	system	and	focus	on	the	instantiation	of	
the	formal	system	to	the	TOE	specifications	and	correspondence	proofs.	

The	 formal	 style	 supports	 mathematical	 proofs	 of	 the	 security	 properties	 based	 on	 the	 security	
features,	 the	consistency	of	refinements	and	the	correspondence	of	 the	representations.	Formal	 tool	
support	 seems	 adequate	 whenever	 manual	 derivations	 would	 otherwise	 become	 long	 winded	 and	
incomprehensible.	 Formal	 tools	 are	 also	 apt	 to	 reduce	 the	 error	 probability	 inherent	 in	 manual	
derivations.	

Examples	of	formal	systems:	

—	 The	Z	specification	language	is	highly	expressive,	and	supports	many	different	methods	or	styles	
of	 formal	 specification.	 The	 use	 of	 Z	 has	 been	 predominantly	 for	 model-oriented	 specification,	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 176	
	

	

using	 schemas	 to	 formally	 specify	 operations.	 See	 https://en.wikipedia.org/wiki/Z_notation	 for	
more	information.	

—	 ACL2	 is	 an	 open-source	 formal	 system	 comprising	 a	 LISP-based	 specification	 language	 and	 a	
theorem	prover.	See	http://www.cs.utexas.edu/users/moore/acl2/	for	further	information.	

—	 Isabelle	is	a	popular	generic	theorem	proving	environment	that	allows	mathematical	formulae	to	
be	expressed	in	a	formal	language	and	provides	tools	for	proving	those	formulae	within	a	logical	
calculus	(see	e.g.	https://www.cl.cam.ac.uk/Research/HVG/Isabelle/	for	additional	information).	

—	 The	B	method	 is	 a	 formal	 system	based	on	 the	propositional	 calculus,	 the	 first	order	predicate	
calculus	with	inference	rules	and	set	theory	(see	e.g.	https://en.wikipedia.org/wiki/B-Method	for	
further	information).	

—	 NuSMV	 (based	 on	 its	 predecessor	 SMV)	 is	 a	 symbolic	 model	 checker	 designed	 to	 be	 an	 open	
architecture	 for	 model	 checking	 which	 can	 be	 reliably	 used	 for	 the	 verification	 of	 industrial	
designs,	as	a	core	for	custom	verification	tools,	and	as	a	testbed	for	formal	verification	techniques.	
See	http://nusmv.fbk.eu/	for	more	information.	

—	 Coq	is	a	formal	proof	management	system	that	provides	a	formal	language	to	write	mathematical	
definitions,	 executable	 algorithms	 and	 theorems	 together	 with	 an	 environment	 for	 semi-
interactive	 development	 of	 machine-checked	 proofs.	 See	 https://coq.inria.fr/	 for	 more	
information.	

—	 SystemVerilog	is	a	combined	hardware	description	language	and	hardware	verification	language	
based	on	Verilog.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 177	
	

	

Annex	B	
(informative)	

	
Composition	(ACO)	

The	goal	of	this	annex	is	to	explain	the	concepts	behind	composition	evaluations	and	the	ACO	criteria.	
This	annex	does	not	define	the	ASE	criteria;	this	definition	can	be	found	in	Clause	9.	

B.1 Necessity	for	composed	TOE	evaluations	

The	IT	market	is,	on	the	whole,	made	up	of	vendors	offering	a	particular	type	of	product/technology.	
Although	 there	 is	 some	 overlap,	 where	 a	 PC	 hardware	 vendor	may	 also	 offer	 application	 software	
and/or	operating	systems	or	a	chip	manufacturer	may	also	develop	a	dedicated	operating	system	for	
their	own	chipset,	it	is	often	the	case	that	an	IT	solution	is	implemented	by	a	variety	of	vendors.	

There	is	sometimes	a	need	for	assurance	in	the	combination	(composition)	of	components	in	addition	
to	the	assurance	of	the	individual	components.	Although	there	is	cooperation	between	these	vendors,	
in	the	dissemination	of	certain	material	required	for	the	technical	integration	of	the	components,	the	
agreements	 rarely	 stretch	 to	 the	 extent	 of	 providing	 detailed	 design	 information	 and	 development	
process/procedure	evidence.	This	 lack	of	 information	 from	 the	developer	of	 a	 component	on	which	
another	component	relies	means	that	the	dependent	component	developer	does	not	have	access	to	the	
type	of	information	necessary	to	perform	an	evaluation	of	both	the	dependent	and	base	components	at	
EAL2	or	above.	Therefore,	while	an	evaluation	of	the	dependent	component	can	still	be	performed	at	
any	assurance	level,	to	compose	components	with	assurance	at	EAL2	or	above	it	is	necessary	to	reuse	
the	evaluation	evidence	and	results	of	evaluations	performed	for	the	component	developer.	

It	is	intended	that	the	ACO	criteria	are	applicable	in	the	situation	where	one	IT	entity	is	dependent	on	
another	 for	 the	provision	of	 security	 services.	The	entity	providing	 the	 services	 is	 termed	 the	 “base	
component”,	and	that	receiving	the	services	is	termed	the	“dependent	component”.	This	relationship	
may	 exist	 in	 a	 number	 of	 contexts.	 For	 example,	 an	 application	 (dependent	 component)	 may	 use	
services	 provided	by	 an	 operating	 system	 (base	 component).	 Alternatively,	 the	 relationship	may	be	
peer-to-peer,	 in	 the	 sense	of	 two	 linked	applications,	 either	 running	 in	 a	 common	operating	 system	
environment,	or	on	separate	hardware	platforms.	If	there	is	a	dominant	peer	providing	the	services	to	
the	minor	peer,	 the	dominant	peer	 is	 considered	 to	be	 the	base	 component	and	 the	minor	peer	 the	
dependent	component.	If	the	peers	provide	services	to	each	other	in	a	mutual	manner,	each	peer	will	
be	 considered	 to	be	 the	base	 component	 for	 the	 services	offered	and	dependent	 component	 for	 the	
services	 required.	 This	will	 require	 iterations	 of	 the	 ACO	 components	 applying	 all	 requirements	 to	
each	type	of	component	peer.	

The	 criteria	 are	 also	 intended	 to	 be	 more	 broadly	 applicable,	 stepwise	 (where	 a	 composed	 TOE	
comprised	of	 a	dependent	 component	and	a	base	 component	 itself	becomes	 the	base	 component	of	
another	composed	TOE),	in	more	complex	relationships,	but	this	may	require	further	interpretation.	

It	 is	 still	 required	 for	 composed	 TOE	 evaluations	 that	 the	 individual	 components	 are	 evaluated	
independently,	 as	 the	 composition	 evaluation	 builds	 on	 the	 results	 of	 the	 individual	 component	
evaluations.	The	evaluation	of	the	dependent	component	may	still	be	in	progress	when	the	composed	
TOE	evaluation	commences.	However,	the	dependent	component	evaluation	must	complete	before	the	
composed	TOE	evaluation	completes.	

The	 composed	 evaluation	 activities	 evaluation	 activities	 may	 take	 place	 at	 the	 same	 time	 as	 the	
dependent	component	evaluation.	This	is	due	to	two	factors:	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 178	
	

	

a)	 Economic/business	drivers	 -	 the	dependent	 component	developer	will	 either	be	 sponsoring	 the	
composition	 evaluation	 activities	 evaluation	 activities	 or	 supporting	 these	 activities	 as	 the	
evaluation	 deliverables	 from	 the	 dependent	 component	 evaluation	 are	 required	 for	 composed	
evaluation	activities.	

b)	 Technical	drivers	-	the	components	consider	whether	the	requisite	assurance	is	provided	by	the	
base	 component	 (e.g.	 considering	 the	 changes	 to	 the	 base	 component	 since	 completion	 of	 the	
component	 evaluation)	 with	 the	 understanding	 that	 the	 dependent	 component	 has	 recently	
undergone	(is	undergoing)	component	evaluation	and	all	evaluation	deliverables	associated	with	
the	evaluation	are	available.	Therefore,	there	are	no	activities	during	composition	requesting	the	
dependent	 component	 evaluation	 activities	 evaluation	 activities	 to	 be	 re-verified.	 Also,	 it	 is	
verified	 that	 the	 base	 component	 forms	 (one	 of)	 the	 test	 configurations	 for	 the	 testing	 of	 the	
dependent	component	during	the	dependent	component	evaluation,	leaving	ACO_CTT	to	consider	
the	base	component	in	this	configuration.	

The	evaluation	evidence	 from	the	evaluation	of	 the	dependent	component	 is	required	 input	 into	the	
composed	 TOE	 evaluation	 activities.	 The	 only	 evaluation	 material	 from	 the	 evaluation	 of	 the	 base	
component	that	is	required	as	input	into	the	composed	TOE	evaluation	activities:	

a)	 Residual	 vulnerabilities	 in	 the	 base	 component,	 as	 reported	 during	 the	 base	 component	
evaluation.	This	is	required	for	the	ACO_VUL	activities.	

No	other	evaluation	evidence	from	the	base	component	activities	should	be	required	for	the	composed	
TOE	 evaluation,	 as	 the	 evaluation	 results	 from	 the	 component	 evaluation	 of	 the	 base	 component	
should	be	reused.	Additional	information	about	the	base	component	may	be	required	if	the	composed	
TOE	 TSF	 includes	more	 of	 the	 base	 component	 than	 was	 considered	 to	 be	 TSF	 during	 component	
evaluation	of	the	base	component.	

The	component	evaluation	of	the	base	and	dependent	components	are	assumed	to	be	complete	by	the	
time	final	verdicts	are	assigned	for	the	ACO	components.	

The	ACO_VUL	components	only	consider	resistance	against	an	attacker	with	an	attack	potential	up	to	
Enhanced-Basic.	This	 is	due	to	 the	 level	of	design	 information	that	can	be	provided	of	how	the	base	
component	provides	the	services	on	which	the	dependent	component	relies	through	application	of	the	
ACO_DEV	activities.	Therefore,	 the	confidence	arising	 from	composed	TOE	evaluations	using	CAPs	 is	
limited	to	a	level	similar	to	that	obtained	from	EAL4	component	TOE	evaluations.	Although	assurance	
in	the	components	that	comprise	the	composed	TOE	may	be	higher	than	EAL4.	

B.2 Performing	Security	Target	evaluation	for	a	composed	TOE	

An	 ST	 will	 be	 submitted	 by	 the	 developer	 for	 the	 evaluation	 of	 the	 composed	 (base	 component	 +	
dependent	 component)	 TOE.	 This	 ST	 will	 identify	 the	 assurance	 package	 to	 be	 applied	 to	 the	
composed	TOE,	providing	assurance	in	the	composed	entity	by	drawing	upon	the	assurance	gained	in	
the	component	evaluations.	

The	 purpose	 of	 considering	 the	 composition	 of	 components	 within	 an	 ST	 is	 to	 validate	 the	
compatibility	of	the	components	from	the	point	of	view	of	both	the	environment	and	the	requirements,	
and	also	to	assess	that	the	composed	TOE	ST	is	consistent	with	the	component	STs	and	the	security	
policies	expressed	within	 them.	This	 includes	determining	 that	 the	 component	STs	and	 the	 security	
policies	expressed	within	them	are	compatible.	

The	composed	TOE	ST	may	refer	out	to	the	content	of	the	component	STs,	or	the	ST	author	may	choose	
to	reiterate	the	material	of	the	component	STs	within	the	composed	TOE	ST	providing	a	rationale	of	
how	the	component	STs	are	represented	in	the	composed	TOE	ST.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 179	
	

	

During	the	conduct	of	the	ASE_CCL	evaluation	activities	evaluation	activities	for	a	composed	TOE	ST	
the	evaluator	determines	that	the	component	STs	are	accurately	represented	in	the	composed	TOE	ST.	
This	 is	 achieved	 through	 determining	 that	 the	 composed	 TOE	 ST	 demonstrably	 conforms	 to	 the	
component	 TOE	 STs.	 Also,	 the	 evaluator	 will	 need	 to	 determine	 that	 the	 dependencies	 of	 the	
dependent	component	on	the	operational	environment	are	adequately	fulfilled	in	the	composed	TOE.	

The	 composed	TOE	description	will	 describe	 the	 composed	 solution.	The	 logical	 and	physical	 scope	
and	boundary	of	the	composed	solution	will	be	described,	and	the	logical	boundary(ies)	between	the	
components	 will	 also	 be	 identified.	 The	 description	 will	 identify	 the	 security	 functionality	 to	 be	
provided	by	each	component.	

The	statement	of	SFRs	for	the	composed	TOE	will	identify	which	component	is	to	satisfy	an	SFR.	If	an	
SFR	is	met	by	both	components,	then	the	statement	will	identify	which	component	meets	the	different	
aspects	of	the	SFR.	Similarly,	the	composed	TOE	Summary	Specification	will	identify	which	component	
provides	the	security	functionality	described.	

The	package	of	ASE:	Security	Target	evaluation	requirements	applied	to	the	composed	TOE	ST	should	
be	 consistent	 with	 the	 package	 of	 ASE:	 Security	 Target	 evaluation	 requirements	 used	 in	 the	
component	evaluations.	

Reuse	of	evaluation	results	 from	the	evaluation	of	component	STs	can	be	made	in	the	instances	that	
the	composed	TOE	ST	directly	 refers	 to	 the	component	STs.	e.g.	 if	 the	composed	TOE	ST	refers	 to	a	
component	ST	for	part	of	its	statement	of	SFRs,	the	evaluator	can	understand	that	the	requirement	for	
the	 completion	 of	 all	 assignment	 and	 selection	 operations	 (as	 stated	 in	 ASE_REQ.*.3C	 has	 been	
satisfied	in	the	component	evaluations.	

B.3 Interactions	between	composed	IT	entities	

The	 TSF	 of	 the	 base	 component	 is	 often	 defined	 without	 knowledge	 of	 the	 dependencies	 of	 the	
possible	applications	with	which	 it	may	by	composed.	The	TSF	of	 this	base	component	 is	defined	to	
include	 all	 parts	 of	 the	 base	 component	 that	 have	 to	 be	 relied	 upon	 for	 enforcement	 of	 the	 base	
component	 SFRs.	This	will	 include	 all	 parts	 of	 the	base	 component	 required	 to	 implement	 the	base	
component	SFRs.	

The	TSFI	of	this	base	component	represents	the	interfaces	provided	by	the	TSF	to	the	external	entities	
defined	in	the	statement	of	SFRs	to	invoke	a	service	of	the	TSF.	This	includes	interfaces	to	the	human	
user	and	also	interfaces	to	external	IT	entities.	However,	the	TSFI	only	includes	those	interfaces	to	the	
TSF,	 and	 therefore	 is	 not	 necessarily	 an	 exhaustive	 interface	 specification	 of	 all	 possible	 interfaces	
available	 between	 an	 external	 entity	 and	 the	 base	 component.	 The	 base	 component	 may	 present	
interfaces	 to	 services	 that	 were	 not	 considered	 security-relevant,	 either	 because	 of	 the	 inherent	
purpose	 of	 the	 service	 (e.g.	 adjust	 type	 font)	 or	 because	 associated	 ISO/IEC	 15408-2	 SFRs	 are	 not	
being	 claimed	 in	 the	 base	 component's	 ST	 (e.g.	 the	 login	 interface	when	 no	 FIA:	 Identification	 and	
authentication	SFRs	are	claimed).	

The	 functional	 interfaces	provided	by	 the	base	 component	are	 in	 addition	 to	 the	 security	 interfaces	
(TSFIs),	 and	 are	 not	 required	 to	 be	 considered	 during	 the	 base	 component	 evaluation.	 These	 often	
include	interfaces	that	are	used	by	a	dependent	component	to	invoke	a	service	provided	by	the	base	
component.	

The	 base	 component	may	 include	 some	 indirect	 interfaces	 through	which	 TSFIs	may	 be	 called,	 e.g.	
APIs	that	can	be	used	to	invoke	a	service	of	the	TSF,	which	were	not	considered	during	the	evaluation	
of	the	base	component.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 180	
	

	

	

Figure	B.1	—	Base	component	abstraction	

The	 dependent	 component,	 which	 relies	 on	 the	 base	 component,	 is	 similarly	 defined:	 interfaces	 to	
external	entities	defined	in	the	SFRs	of	the	component	ST	are	categorised	as	TSFI	and	are	examined	in	
ADV_FSP.	This	is	illustrated	in	Figure	B.1).	

Any	call	out	 from	the	dependent	TSF	 to	 the	environment	 in	 support	of	an	SFR	will	 indicate	 that	 the	
dependent	TSF	requires	some	service	from	the	environment	in	order	to	satisfy	the	enforcement	of	the	
stated	dependent	component	SFRs.	Such	a	service	is	outside	the	dependent	component	boundary	and	
the	base	component	is	unlikely	to	be	defined	in	the	dependent	ST	as	an	external	entity.	Hence,	the	calls	
for	services	made	out	by	the	dependent	TSF	to	its	underlying	platform	(the	base	component)	will	not	
be	 analysed	as	part	 of	 the	Functional	 specification	 (ADV_FSP)	 activities.	These	dependencies	on	 the	
base	 component	 are	 expressed	 in	 the	 dependent	 component	 ST	 as	 security	 objectives	 for	 the	
environment.	

This	abstraction	of	the	dependent	component	and	the	interfaces	is	shown	in	Figure	B.2	below.	

	

Figure	B.2	—	Dependent	component	abstraction	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 181	
	

	

When	 considering	 the	 composition	 of	 the	 base	 component	 and	 the	 dependent	 component,	 if	 the	
dependent	 component's	 TSF	 requires	 services	 from	 the	 base	 component	 to	 support	 the	
implementation	 of	 the	 SFR,	 the	 interface	 to	 the	 service	 will	 need	 to	 be	 defined.	 If	 that	 service	 is	
provided	by	the	base	component's	TSF,	then	that	interface	should	be	a	TSFI	of	the	base	component	and	
will	therefore	already	be	defined	within	the	functional	specification	of	the	base	component.	

If,	however,	 the	service	called	by	 the	dependent	component's	TSF	 is	not	provided	by	 the	TSF	of	 the	
base	component	(i.e.	it	is	implemented	in	the	non-TSF	portion	of	the	base	component	or	possibly	even	
in	the	non-TOE	portion	of	the	base	component	(not	illustrated	in	Figure	B.3),	there	is	unlikely	to	be	a	
TSFI	of	 the	base	component	relating	 to	 the	service,	unless	 the	service	 is	mediated	by	 the	TSF	of	 the	
base	component.	The	 interfaces	 to	 these	services	 from	the	dependent	component	 to	 the	operational	
environment	are	considered	in	the	family	Reliance	of	dependent	component	(ACO_REL).	

The	non-TSF	portion	of	 the	base	component	 is	drawn	 into	 the	TSF	of	 the	composed	TOE	due	 to	 the	
dependencies	 the	 dependent	 component	 has	 on	 the	 base	 component	 to	 support	 the	 SFRs	 of	 the	
dependent	component.	Therefore,	 in	such	cases,	 the	TSF	of	 the	composed	TOE	would	be	 larger	than	
simply	the	sum	of	the	components'	TSFs.	

	

Figure	B.3	—	Composed	TOE	abstraction	

It	may	be	the	case	that	the	base	component	TSFI	is	being	called	in	a	manner	that	was	unforeseen	in	the	
base	 component	 evaluation.	 Hence	 there	 would	 be	 a	 requirement	 for	 further	 testing	 of	 the	 base	
component	TSFI.	

The	 possible	 interfaces	 are	 further	 described	 in	 the	 following	 diagram	 (Figure	B.4)	 and	 supporting	
text.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 182	
	

	

	

Figure	B.4	—	Composed	component	interfaces	

a)	 Arrows	 going	 into	 'dependent	 component-a'	 (A	 and	 B)	=	where	 the	 component	 expects	 the	
environment	to	respond	to	a	service	request	(responding	to	calls	out	from	dependent	component	
to	the	environment);	

b)	 Arrows	coming	out	of	'base	component-b'	(C	and	D)	=	interfaces	of	services	provided	by	the	base	
component	to	the	environment;	

c)	 Broken	lines	between	components	=	types	of	communication	between	pairs	of	interfaces;	

d)	 The	other	(grey)	arrows	=	interfaces	that	are	described	by	the	given	criteria.	

The	following	is	a	simplification,	but	explains	the	considerations	that	need	to	be	made.	

There	are	components	a	('dependent	component-a')	and	b	('base	component-b'):	 the	arrows	coming	
out	of	TSF-a	are	services	provided	by	TSF-a	and	are	therefore	TSFIs(a);	 likewise,	the	arrows	coming	
out	 of	 TSF-b	 (“C”)	 are	 TSFIs(b).	 These	 are	 each	 detailed	 in	 their	 respective	 functional	 specs.	
component-a	 is	 such	 that	 it	 requires	services	 from	 its	environment:	 those	needed	by	 the	TSF(a)	are	
labelled	“A”;	the	other	(not	related	to	TSF-a)	services	are	labelled	“B”.	

When	component-a	and	component-b	are	combined,	there	are	four	possible	combinations	of	{services	
needed	by	 component-a}	 and	 {services	provided	by	 component-b},	 shown	as	broken	 lines	 (types	of	
communication	between	pairs	of	interfaces).	Any	set	of	these	might	exist	for	a	particular	composition:	

a)	 TSF-a	 needs	 those	 services	 that	 are	 provided	 by	 TSF-b	 (“A”	 is	 connected	 to	 “C”):	 this	 is	
straightforward:	 the	 details	 about	 “C”	 are	 in	 the	 FSP	 for	 component-b.	 In	 this	 instance	 the	
interfaces	should	all	be	defined	in	the	functional	specifications	for	the	component-b.	

b)	 Non-TSF-a	 needs	 those	 services	 that	 are	 provided	 by	 TSF-b	 (“B”	 is	 connected	 to	 “C”):	 this	 is	
straightforward	 (again,	 the	details	about	 “C”	are	 in	 the	FSP	 for	 component-b),	but	unimportant:	
security-wise.	

c)	 Non-TSF-a	needs	those	services	that	are	provided	by	non-TSF-b	(“B”	is	connected	to	“D”):	we	have	
no	details	about	D,	but	there	are	no	security	implications	about	the	use	of	these	interfaces,	so	they	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 183	
	

	

do	not	need	to	be	considered	in	the	evaluation,	although	they	are	likely	to	be	an	integration	issue	
for	the	developer.	

d)	 TSF-a	needs	those	services	that	are	provided	by	non-TSF-b	(“A”	is	connected	to	“D”):	this	would	
arise	when	component-a	and	component-b	have	different	senses	of	what	a	 “security	service”	 is.	
Perhaps	component-b	is	making	no	claims	about	I&A	(has	no	FIA	SFRs	in	its	ST),	but	component-a	
needs	authentication	provided	by	 its	environment.	There	are	no	details	about	the	“D”	 interfaces	
available	(they	are	not	TSFI	(b),	so	they	are	not	in	component-b's	FSP).	

Note:	 if	the	kind	of	interaction	described	in	case	d	above	exists,	then	the	TSF	of	the	composed	TOE	would	be	
TSF-a	+	TSF-b	+	Non-TSF-b.	Otherwise,	the	TSF	of	the	composed	TOE	would	be	TSF-a	+	TSF-b.	

Interfaces	types	2	and	4	of	Figure	B.4	are	not	directly	relevant	to	the	evaluation	of	the	composed	TOE.	
Interfaces	1	and	3	will	be	considered	during	the	application	of	different	families:	

a)	 Functional	specification	(ADV_FSP)	(for	component-b)	will	describe	the	C	interfaces.	

b)	 Reliance	of	dependent	component	(ACO_REL)	will	describe	the	A	interfaces.	

c)	 Development	evidence	(ACO_DEV)	will	describe	the	C	interfaces	for	connection	type	1	and	the	D	
interfaces	for	connection	type	3.	

A	typical	example	where	composition	may	be	applied	is	a	database	management	system	(DBMS)	that	
relies	upon	its	underlying	operating	system	(OS).	During	the	evaluation	of	the	DBMS	component,	there	
will	be	an	assessment	made	of	the	security	properties	of	that	DBMS	(to	whatever	degree	of	rigour	is	
dictated	by	the	assurance	components	used	in	the	evaluation):	its	TSF	boundary	will	be	identified,	its	
functional	 specification	 will	 be	 assessed	 to	 determine	 whether	 it	 describes	 the	 interfaces	 to	 the	
security	 services	 provided	 by	 the	 TSF,	 perhaps	 additional	 information	 about	 the	 TSF	 (its	 design,	
architecture,	internal	structure)	will	be	provided,	the	TSF	will	be	tested,	aspects	of	its	life-cycle	and	its	
guidance	documentation	will	be	assessed,	etc.	

However,	the	DBMS	evaluation	will	not	call	for	any	evidence	concerning	the	dependency	the	DBMS	has	
on	 the	OS.	 The	 ST	 of	 the	DBMS	will	most	 likely	 state	 assumptions	 about	 the	OS	 in	 its	 Assumptions	
subclause	 and	 state	 security	 objectives	 for	 the	OS	 in	 its	 Environment	 subclause.	 The	DBMS	ST	may	
even	instantiate	those	objectives	for	the	environment	in	terms	of	SFRs	for	the	OS.	However,	there	will	
be	 no	 specification	 for	 the	 OS	 that	 mirrors	 the	 detail	 in	 the	 functional	 specification,	 architecture	
description,	or	other	ADV	evidence	as	for	the	DBMS.	Reliance	of	dependent	component	(ACO_REL)	will	
fulfil	that	need.	

Reliance	of	dependent	component	(ACO_REL)	describes	the	interfaces	of	the	dependent	TOE	that	make	
the	 calls	 to	 the	base	 component	 for	 the	provision	of	 services.	These	 are	 the	 interfaces	 to	which	 the	
base	 component	 is	 to	 respond.	 The	 interface	 descriptions	 are	 provided	 from	 the	 dependent	
component's	viewpoint.	

Development	 evidence	 (ACO_DEV)	describes	 the	 interfaces	 provided	by	 the	 base	 component,	which	
respond	to	 the	dependent	component	service	requests.	These	 interfaces	are	mapped	to	 the	relevant	
dependent	component	interfaces	that	are	identified	in	the	reliance	information.	(The	completeness	of	
this	mapping,	whether	the	base	component	interfaces	described	represent	all	dependent	component	
interfaces,	 is	 not	 verified	 here,	 but	 in	 Composition	 rationale	 (ACO_COR)).	 At	 the	 higher	 levels	 of	
ACO_DEV	the	subsystems	providing	the	interfaces	are	described.	

Any	 interfaces	 required	 by	 the	 dependent	 component	 that	 have	 not	 been	 described	 for	 the	 base	
component	 are	 reported	 in	 the	 rationale	 for	 Composition	 rationale	 (ACO_COR).	 The	 rationale	 also	
reports	whether	the	interfaces	of	the	base	component	on	which	the	dependent	component	relies	were	
considered	within	the	base	component	evaluation.	For	any	interfaces	that	were	not	considered	in	the	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 184	
	

	

base	 component	evaluation,	 a	 rationale	 is	provided	of	 the	 impact	of	using	 the	 interface	on	 the	base	
component	TSF.	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 185	
	

	

Annex	C	
(informative)	

	
Cross	reference	of	assurance	component	dependencies	

The	dependencies	documented	in	the	components	of	Clauses	7	and	9-15	are	the	direct	dependencies	
between	the	assurance	components.	

The	 following	dependency	 tables	 for	assurance	components	 show	their	direct,	 indirect	and	optional	
dependencies.	Each	of	the	components	that	is	a	dependency	of	some	assurance	component	is	allocated	
a	column.	Each	assurance	component	is	allocated	a	row.	The	value	in	the	table	cell	 indicate	whether	
the	 column	 label	 component	 is	 directly	 required	 (indicated	 by	 a	 cross	 “X”),	 indirectly	 required	
(indicated	by	a	dash	“-”)	or	optional	(indicated	by	an	“O”),	by	the	row	label	component.	If	no	character	
is	presented,	the	component	is	not	dependent	upon	another	component.	

Table	C.1	—	Dependency	table	for	Class	ADV:	Development	

ADV	 ADV_F
SP.1	

ADV_F
SP.2	

ADV_F
SP.3	

ADV_F
SP.4	

ADV_F
SP.5	

ADV_F
SP.6	

ADV_I
MP.1	

ADV_T
DS.1	

ADV_T
DS.3	

ALC_C
MC.5	

ALC_C
MS.1	

ALC_D
VS.2	

ALC_L
CD.1	

ALC_T
AT.1	

ADV_ARC.1	 X	 –	 	 	 	 	 	 X	 	 	 	 	 	 	

ADV_COMP
.1	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

ADV_FSP.1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

ADV_FSP.2	 	 –	 	 	 	 	 	 X	 	 	 	 	 	 	

ADV_FSP.3	 	 –	 	 	 	 	 	 X	 	 	 	 	 	 	

ADV_FSP.4	 	 –	 	 	 	 	 	 X	 	 	 	 	 	 	

ADV_FSP.5	 	 –	 	 –	 	 	 X	 X	 –	 	 	 	 	 –	

ADV_FSP.6	 	 –	 	 –	 	 	 X	 X	 –	 	 	 	 	 –	

ADV_IMP.1	 	 –	 	 –	 	 	 –	 –	 X	 	 	 	 	 X	

ADV_IMP.2	 	 –	 	 –	 	 	 –	 –	 X	 X	 –	 –	 –	 X	

ADV_INT.1	 	 –	 	 –	 	 	 X	 –	 X	 	 	 	 	 X	

ADV_INT.2	 	 –	 	 –	 	 	 X	 –	 X	 	 	 	 	 X	

ADV_INT.3	 	 –	 	 –	 	 	 X	 –	 X	 	 	 	 	 X	

ADV_SPM.1	 	 –	 	 X–	 X	 X	 –	 –	 –	 	 	 	 	 –	

ADV_TDS.1	 	 X	 	 	 	 	 	 –	 	 	 	 	 	 	

ADV_TDS.2	 	 –	 X	 	 	 	 	 –	 	 	 	 	 	 	

ADV_TDS.3	 	 –	 	 X	 	 	 	 –	 	 	 	 	 	 	

ADV_TDS.4	 	 –	 	 –	 X	 	 –	 –	 –	 	 	 	 	 –	

ADV_TDS.5	 	 –	 	 –	 X	 	 –	 –	 –	 	 	 	 	 –	

ADV_TDS.6	 	 –	 	 –	 	 X	 –	 –	 –	 	 	 	 	 –	

Table	C.2	—	Dependency	table	for	Class	AGD:	Guidance	documents	

AGD	 ADV_FSP.1	

AGD_OPE.1	 X	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 186	
	

	

AGD_PRE.1	 		

Table	C.3	—	Dependency	table	for	Class	ALC:	Life-cycle	support	

ALC	 ADV_
FSP.2	

ADV_
FSP.4	

ADV_I
MP.1	

ADV_
TDS.1	

ADV_
TDS.3	

ALC_C
MS.1	

ALC_C
MS.3	

ALC_
DVS.1	

ALC_
DVS.2	

ALC_L
CD.1	

ALC_T
AT.1	

ALC_CMC.1	 		 		 		 		 		 X	 		 		 		 		 		

ALC_CMC.2	 		 		 		 		 		 X	 		 		 		 		 		

ALC_CMC.3	 		 		 		 		 		 X	 		 X	 		 X	 		

ALC_CMC.4	 		 		 		 		 		 X	 		 X	 		 X	 		

ALC_CMC.5	 		 		 		 		 		 X	 		 		 X	 X	 		

ALC_CMS.1	 		 		 		 		 		 		 		 		 		 		 		

ALC_CMS.2	 		 		 		 		 		 		 		 		 		 		 		

ALC_CMS.3	 		 		 		 		 		 		 		 		 		 		 		

ALC_CMS.4	 		 		 		 		 		 		 		 		 		 		 		

ALC_CMS.5	 		 		 		 		 		 		 		 		 		 		 		

ALC_COMP.1	 		 		 		 		 		 		 		 		 		 		 		

ALC_DEL.1	 		 		 		 		 		 		 		 		 		 		 		

ALC_DVS.1	 		 		 		 		 		 		 		 		 		 		 		

ALC_DVS.2	 		 		 		 		 		 		 		 		 		 		 		

ALC_FLR.1	 		 		 		 		 		 		 		 		 		 		 		

ALC_FLR.2	 		 		 		 		 		 		 		 		 		 		 		

ALC_FLR.3	 		 		 		 		 		 		 		 		 		 		 		

ALC_LCD.1	 		 		 		 		 		 		 		 		 		 		 		

ALC_LCD.2	 		 		 		 		 		 		 		 		 		 		 		

ALC_TAT.1	 –	 –	 X	 –	 –	 		 		 		 		 		 –	

ALC_TAT.2	 –	 –	 X	 –	 –	 		 		 		 		 		 –	

ALC_TAT.3	 –	 –	 X	 –	 –	 		 		 		 		 		 –	

ALC_TDA.1	 		 		 		 		 		 		 		 		 		 		 		

ALC_TDA.2	 		 		 		 		 		 		 X	 		 		 		 		

ALC_TDA.3	 –	 –	 X	 –	 –	 		 X	 		 		 		 X	

Table	C.4	—	Dependency	table	for	Class	APE:	Protection	Profile	evaluation	

APE	 APE_EC
D.1	

APE_IN
T.1	

APE_OB
J.2	

APE_RE
Q.1	

APE_SP
D.1	

APE_CCL.1	 X	 X	 		 X	 		

APE_ECD.1	 		 		 		 		 		

APE_INT.1	 		 		 		 		 		

APE_OBJ.1	 		 		 		 		 		



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 187	
	

	

APE_OBJ.2	 		 		 		 		 X	

APE_REQ.1	 X	 		 		 		 		

APE_REQ.2	 X	 		 X	 		 –	

APE_SPD.1	 		 		 		 		 		



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 188	
	

	

Table	C.5	—	Dependency	table	for	Class	ACE:	Protection	Profile	Configuration	evaluation	

ACE	 ACE_C
CL.1	

ACE_E
CD.1	

ACE_I
NT.1	

ACE_M
CO.1	

ACE_O
BJ.1	

ACE_O
BJ.2	

ACE_R
EQ.1	

ACE_R
EQ.2	

ACE_S
PD.1	

APE_E
CD.1	

ACE_CCL.1	 		 X	 X	 		 –	 		 O	 O	 –	 –	

ACE_CCO.1	 X	 X	 X	 X	 O	 O	 O	 O	 X	 –	

ACE_ECD.1	 		 		 		 		 		 		 		 		 		 		

ACE_INT.1	 		 		 		 		 		 		 		 		 		 		

ACE_MCO.1	 		 –	 X	 		 O	 O	 O	 O	 X	 –	

ACE_OBJ.1	 		 		 		 		 		 		 		 		 		 		

ACE_OBJ.2	 		 		 		 		 		 		 		 		 X	 		

ACE_REQ.1	 		 		 		 		 		 		 		 		 X	 X	

ACE_REQ.2	 		 X	 		 		 		 X	 		 		 		 		

ACE_SPD.1	 		 		 		 		 		 		 		 		 		 		

Table	C.6	—	Dependency	table	for	Class	ASE:	Security	Target	evaluation	

ASE	 ADV_A
RC.1	

ADV_F
SP.1	

ADV_F
SP.2	

ADV_T
DS.1	

ASE_EC
D.1	

ASE_IN
T.1	

ASE_O
BJ.2	

ASE_R
EQ.1	

ASE_SP
D.1	

ASE_CCL.1	 		 		 		 		 X	 X	 		 X	 		

ASE_COMP.1	 		 		 		 		 		 		 		 		 		

ASE_ECD.1	 		 		 		 		 		 		 		 		 		

ASE_INT.1	 		 		 		 		 		 		 		 		 		

ASE_OBJ.1	 		 		 		 		 		 		 		 		 		

ASE_OBJ.2	 		 		 		 		 		 		 		 		 X	

ASE_REQ.1	 		 		 		 		 X	 		 		 		 		

ASE_REQ.2	 		 		 		 		 X	 		 X	 		 –	

ASE_SPD.1	 		 		 		 		 		 		 		 		 		

ASE_TSS.1	 		 X	 		 		 –	 X	 		 X	 		

ASE_TSS.2	 X	 –	 –	 –	 –	 X	 		 X	 		

Table	C.7	—	Dependency	table	for	Class	ATE:	Tests	

ATE	 AD
V_A
RC.
1	

AD
V_F
SP.
1	

AD
V_F
SP.
2	

AD
V_F
SP.
3	

AD
V_F
SP.
4	

AD
V_F
SP.
5	

AD
V_I
MP.
1	

AD
V_T
DS.
1	

AD
V_T
DS.
2	

AD
V_T
DS.
3	

AD
V_T
DS.
4	

AG
D_O
PE.
1	

AG
D_P
RE.
1	

ALC
_TA
T.1	

ATE
_CO
V.1	

ATE
_FU
N.1	

ATE_COMP.1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

ATE_COV.1	 		 		 X	 		 		 		 		 –	 		 		 		 		 		 		 –	 X	

ATE_COV.2	 		 		 X	 		 		 		 		 –	 		 		 		 		 		 		 –	 X	

ATE_COV.3	 		 		 X	 		 		 		 		 –	 		 		 		 		 		 		 –	 X	

ATE_DPT.1	 X	 –	 –	 –	 		 		 		 –	 X	 		 		 		 		 		 –	 X	



ISO/IEC	DIS	15408-3:2020(E)	

©	ISO/IEC	2020	–	All	rights	reserved	 	 189	
	

	

ATE_DPT.2	 X	 –	 –	 		 –	 		 		 –	 		 X	 		 		 		 		 –	 X	

ATE_DPT.3	 X	 –	 –	 		 –	 –	 –	 –	 		 –	 X	 		 		 –	 –	 X	

ATE_DPT.4	 X	 –	 –	 		 –	 –	 X	 –	 		 –	 X	 		 		 –	 –	 X	

ATE_FUN.1	 		 		 –	 		 		 		 		 –	 		 		 		 		 		 		 X	 –	

ATE_FUN.2	 		 		 –	 		 		 		 		 –	 		 		 		 		 		 		 X	 –	

ATE_IND.1	 		 X	 		 		 		 		 		 		 		 		 		 X	 X	 		 		 		

ATE_IND.2	 		 –	 X	 		 		 		 		 –	 		 		 		 X	 X	 		 X	 X	

ATE_IND.3	 		 –	 –	 		 X	 		 		 –	 		 		 		 X	 X	 		 X	 X	

Table	C.8	—	Dependency	table	for	Class	AVA:	Vulnerability	assessment	

AVA	 ADV
_AR
C.1	

ADV
_FSP
.1	

ADV
_FSP
.2	

ADV
_FSP
.3	

ADV
_FSP
.4	

ADV
_IM
P.1	

ADV
_TD
S.1	

ADV
_TD
S.2	

ADV
_TD
S.3	

AGD
_OP
E.1	

AGD
_PR
E.1	

ALC
_TA
T.1	

ATE
_CO
V.1	

ATE
_DP
T.1	

ATE
_FU
N.1	

AVA_COMP.1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

AVA_VAN.1	 		 X	 		 		 		 		 		 		 		 X	 X	 		 		 		 		

AVA_VAN.2	 X	 –	 X	 		 		 		 X	 		 		 X	 X	 		 		 		 		

AVA_VAN.3	 X	 –	 –	 –	 X	 X	 –	 –	 X	 X	 X	 –	 –	 X	 –	

AVA_VAN.4	 X	 –	 –	 –	 X	 X	 –	 –	 X	 X	 X	 –	 –	 X	 –	

AVA_VAN.5	 X	 –	 –	 –	 X	 X	 –	 –	 X	 X	 X	 –	 –	 X	 –	

Table	C.9	—	Dependency	table	for	class	ACO:	Composition	

ACO	 ACO_
DEV.1	

ACO_
DEV.2	

ACO_
DEV.3	

ACO_
REL.1	

ACO_
REL.2	

ALC_C
MC.1	

ALC_C
MS.1	

ACO_COR.1	 X	 		 		 X	 		 X	 –	

ACO_CTT.1	 X	 		 		 X	 		 		 		

ACO_CTT.2	 		 X	 		 –	 X	 		 		

ACO_DEV.1	 		 		 		 X	 		 		 		

ACO_DEV.2	 		 		 		 X	 		 		 		

ACO_DEV.3	 		 		 		 		 X	 		 		

ACO_REL.1	 		 		 		 		 		 		 		

ACO_REL.2	 		 		 		 		 		 		 		

ACO_VUL.1	 X	 		 		 –	 		 		 		

ACO_VUL.2	 		 X	 		 –	 		 		 		

ACO_VUL.3	 		 		 X	 		 –	 		 		

	


